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This study evaluates various evolutionary search methods to direct neural controller 
evolution in company with policy (behavior) transfer across increasingly complex 
collective robotic (RoboCup keep-away) tasks. Robot behaviors are first evolved in a 
source task and then transferred for further evolution to more complex target tasks. 
Evolutionary search methods tested include objective-based search (fitness function), 
behavioral and genotypic diversity maintenance, and hybrids of such diversity main-
tenance and objective-based search. Evolved behavior quality is evaluated according 
to effectiveness and efficiency. Effectiveness is the average task performance of 
transferred and evolved behaviors, where task performance is the average time the 
ball is controlled by a keeper team. Efficiency is the average number of generations 
taken for the fittest evolved behaviors to reach a minimum task performance threshold 
given policy transfer. Results indicate that policy transfer coupled with hybridized evo-
lution (behavioral diversity maintenance and objective-based search) addresses the 
bootstrapping problem for increasingly complex keep-away tasks. That is, this hybrid 
method (coupled with policy transfer) evolves behaviors that could not otherwise 
be evolved. Also, this hybrid evolutionary search was demonstrated as consistently 
evolving topologically simple neural controllers that elicited high-quality behaviors.

Keywords: evolutionary policy transfer, behavioral diversity maintenance, hybrid objective-novelty search, 
collective behavior evolution, robocup keep-away soccer

1. inTrODUcTiOn

Recent work in Evolutionary Robotics (ER) (Doncieux et  al., 2015) has provided increasing 
empirical evidence that maintaining diversity in phenotypes (robot behaviors) improves the 
quality (task performance) of evolved behaviors (Mouret and Doncieux, 2012; Cully et al., 2015; 
Cully and Mouret, 2016; Gomes et  al., 2016). Specifically, replacing objective search with the 
search for behavioral diversity in controller evolution (Moriguchi and Honiden, 2010; Mouret 
and Doncieux, 2012; Lehman et al., 2013; Gomes et al., 2015) has been demonstrated to boost 
the quality of evolved behaviors across a range of simulated (Lehman and Stanley, 2011a; Mouret 
and Doncieux, 2012; Gomes et al., 2016) and physical (Cully et al., 2015; Cully and Mouret, 2016) 
ER tasks.

In controller design in the field of ER, there has been an increasing research and empirical data 
indicating that non-objective evolutionary search, such as novelty search (Lehman and Stanley, 
2011a) and other behavioral diversity maintenance approaches (Mouret and Doncieux, 2012), 
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out-perform objective-based search in various evolutionary 
robotic control tasks defined by complex, high dimensional, 
and deceptive fitness landscapes (Cully et al., 2015; Cully and 
Mouret, 2016; Gomes et al., 2016). However, current empirical 
data indicate that for controller evolution to solve complex 
collective behavior tasks, then neither objective nor non-
objective-based search performs well (evolves high-quality 
behaviors). Rather, recent research results indicate that hybrid-
izing these two search approaches facilitates the evolution of 
the high-quality behaviors (Gomes and Christensen, 2013b; 
Gomes et al., 2013, 2015).

Furthermore, related work intersecting the fields of evolu-
tionary controller design and policy (behavior) transfer1 indicate 
that coupling evolutionary search with the transfer of behaviors 
between tasks of increasing complexity is an effective means 
to boost evolved behavior quality for a broad range of tasks 
(Whiteson and Stone, 2006; Taylor et al., 2010; Verbancsics and 
Stanley, 2010; Didi and Nitschke, 2016a). Policy transfer is a 
method that aims to improve learning by leveraging knowledge 
from learning in related but simpler tasks (Pan and Yang, 2010). 
Policy transfer reuses learned information across tasks, where 
information is shared between source and target tasks, and used 
as a starting point for learning new behaviors in target tasks. 
Transferring knowledge learned on a source task accelerates 
learning and increases solution quality in target tasks by exploit-
ing relevant prior knowledge.

While the benefits of non-objective (behavioral and geno-
typic diversity maintenance) and hybrid (Gomes et  al., 2015) 
evolutionary search (Mouret and Doncieux, 2012) and policy 
transfer (Taylor and Stone, 2009) methods have been separately 
demonstrated for increasing behavioral quality in various tasks, 
the impact (on behavior quality) of using non-objective and 
hybrid evolutionary search in the context of policy transfer 
remains unknown. Given previous work elucidating the efficacy 
of hybrid evolutionary search (Gomes and Christensen, 2013b; 
Gomes et al., 2013, 2015) and policy transfer (Taylor et al., 2006; 
Verbancsics and Stanley, 2010; Didi and Nitschke, 2016b) in col-
lective behavior tasks the following hypothesis forms the research 
focus of this study.

Hybridized novelty and objective-based evolutionary search 
used in company with policy transfer across increasingly complex 
collective behavior tasks, results in significantly higher behavior 
quality compared to other evolutionary search methods.

In this study, the evolutionary search method is Hyper-Neuro-
Evolution for Augmenting Topologies (HyperNEAT) (Stanley et al., 
2009), the task domain is RoboCup keep-away, and five evolution-
ary search variants are integrated into HyperNEAT to direct its 
behavior evolution process. These variants are a fitness function 
(objective-based search), behavioral diversity maintenance (nov-
elty search), genotypic diversity maintenance (Section 3), and both 
genotypic and behavioral diversity maintenance hybridized with 
objective-based search. RoboCup keep-away was selected as it 
is a well-established multiagent (robot) experimental platform 
(Taylor et al., 2010).

1 Also referred to as transfer learning in reinforcement learning research (Taylor 
and Stone, 2009).

This study thus evaluates various evolutionary search 
methods coupled with policy transfer as a means to increase 
the quality of evolved collective (keep-away) behaviors. A key 
contribution of this research is a comprehensive empirical 
study demonstrating that coupling policy transfer with hybrid 
evolutionary search (combining novelty- and objective-based 
search) is the most effective method for boosting evolved solu-
tion quality across increasingly complex keep-away tasks.

Results indicate that this hybrid evolutionary search coupled 
with policy transfer effectively addresses the bootstrapping 
problem (Mouret and Doncieux, 2009a) for tested tasks, in that 
evolved behavior quality is significantly higher compared to 
other methods (without policy transfer and not using hybrid 
evolutionary search). Behavior quality is measured by evolved 
behavior effectiveness and efficiency, where effectiveness is the 
increase in average task performance given policy transfer 
and task performance is the average time for which the ball is 
under keeper-team control. Efficiency is the average number of 
generations taken by evolving transferred behaviors to reach 
a minimum task performance threshold given policy transfer. 
Results analysis indicates this to be a product of the interaction 
between the search space exploration capacity of novelty search 
and the search space exploitation capacity of objective-based 
search. As a further result of the hybrid method’s capacity to 
appropriately balance exploration versus exploitation during 
evolutionary search, evolved controllers were topologically sim-
ple and did not contain unnecessary complexity that hindered 
high-behavioral quality.

Furthermore, results indicate that as task complexity 
increases novelty search performs increasingly poorly com-
pared to other evolutionary search methods. This suggests that 
novelty search may not be an appropriate method for behavior 
evolution in complex collective behavior tasks such as RoboCup 
keep-away.

2. relaTeD WOrK

In line with this study’s research focus, this section overviews 
relevant literature in behavioral and genotypic diversity main-
tenance as a means to direct evolutionary search as well as 
evolutionary policy transfer, with a focus on collective behavior 
evolution.

2.1. Behavioral and genotypic Diversity 
Maintenance
Recent work in Evolutionary Robotics (ER) (Doncieux et  al., 
2015) has provided increasing empirical evidence that main-
taining diversity in genotypes (robot controller encodings) 
and phenotypes (robot behaviors) improves the quality (task 
performance) of evolved behaviors in a range of tasks (Mouret 
and Doncieux, 2012; Cully et al., 2015; Cully and Mouret, 2016; 
Gomes et al., 2016).

Encouraging behavioral diversity has received significant 
research attention in ER studies that using evolutionary control-
ler design. Behavioral diversity maintenance has been success-
fully applied to direct neuroevolution processes, discover novel 
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solutions, and increase solution performance to out-perform 
fitness function-based controller evolution approaches in a 
wide range of ER tasks (Mouret and Doncieux, 2012). Replacing 
objective-based search (the evolutionary algorithm’s fitness func-
tion) with the search for behavioral diversity during the controller 
evolution process (Moriguchi and Honiden, 2010; Mouret and 
Doncieux, 2012; Lehman et al., 2013; Gomes et al., 2015) has been 
demonstrated to boost the quality of evolved behaviors across 
a range of simulated (Lehman and Stanley, 2011a; Mouret and 
Doncieux, 2012; Gomes et al., 2016) and physical (Cully et al., 
2015; Cully and Mouret, 2016) robotic tasks.

Novelty search (NS) (Lehman and Stanley, 2011a) is special 
case of behavioral diversity maintenance (Mouret and Doncieux, 
2009a,b) and has become a popular method for directing evolu-
tionary search and boosting solution (evolved behavior) quality 
in a range of applications (Lehman and Stanley, 2010a; Gomes 
et  al., 2013; Hodjat et  al., 2016). Whereas behavioral diversity 
maintenance selects for behavioral diversity with respect to the 
current population (of evolved) behaviors, NS selects for the 
most diverse (novel) behaviors with respect to an archive of 
current novel behaviors (Mouret and Doncieux, 2012; Doncieux 
and Mouret, 2014).

That is, NS is based on the notion of behavioral diversity 
maintenance where a search for novel phenotypes (behaviors) 
replaces the fitness function traditionally used to direct evo-
lutionary search (Eiben and Smith, 2003). Thus, a genotype is 
more likely to be selected for reproduction if its encoded behav-
ior is sufficiently different from all other behaviors produced 
thus far in an evolutionary run. Previous work has indicated 
that controllers evolved with NS function in a range of tasks of 
varying complexity (Velez and Clune, 2014) and such controllers 
consistently out-performed controllers evolved with objective-
based search in a range of ER tasks (Mouret and Doncieux, 
2012; Gomes et  al., 2015, 2016). However, related research 
suggests that for complex tasks such as collective behavior tasks 
associated with swarm robotics (Duarte et al., 2016) (defined by 
high dimensional, rugged, discontinuous, and deceptive fitness 
landscapes (Eiben and Smith, 2003)), that evolutionary search 
hybridizing objectives (fitness functions) and NS tend to evolve 
effective high-quality solutions (behaviors) overall (Gomes and 
Christensen, 2013b; Gomes et  al., 2013, 2015). For a compre-
hensive survey of behavioral diversity maintenance methods 
used in various ER studies, the reader is referred to the review 
of Doncieux and Mouret (2014).

Similarly, previous work has demonstrated the benefits of 
maintaining genotypic diversity as a means to boost the qual-
ity of evolved behaviors for various ER tasks (Floreano et  al., 
2008; Doncieux et al., 2011, 2015; Mouret and Doncieux, 2012). 
Genotype diversity maintenance is also a well-explored topic in 
more general evolutionary computation research (Brameier and 
Banzhaf, 2002; Ekárt and Németh, 2002; Crepinsek et al., 2013; 
Lehman et  al., 2013; Mueller-Bady et  al., 2016). For example, 
popular genotypic diversity maintenance methods include nich-
ing techniques such as fitness sharing and crowding (Sareni and 
Krahenbuhl, 2013), multi-objective optimization (Deb, 2001a), 
and multi-population models (Gomez and Miikkulainen, 1997). 
Such techniques are effective at maintaining genotypic diversity 

throughout an evolutionary process and at boosting solution 
quality on a broad range of multimodal, noisy, high-dimensional 
benchmark problems (Salah et al., 2016).

However, the impact of using genotypic diversity main-
tenance as a means to direct the evolutionary search process,  
i.e., selecting for novel genotypes instead of novel phenotypes, 
as is done for novelty search (Lehman and Stanley, 2011a), has 
received relatively little research attention (Didi and Nitschke, 
2016a,b). It is important to note that dissimilar to previous ER 
studies where genotypic diversity maintenance has been used as 
a mechanism to encourage exploration of the search space by a 
fitness function (Floreano et al., 2008; Doncieux et al., 2011), this 
study employs a genotypic novelty search method (Section 3.5). 
That is, genotypic diversity maintenance drives the evolutionary 
search process meaning that novel genotypes are selected for, 
instead of novel behaviors (Lehman and Stanley, 2011a). To 
date, the impact of controller evolution in ER systems directed 
by genotypic novelty has not been studied and the genotypic 
diversity maintenance approach described in Section 3.5 thus 
constitutes one of this study’s contributions.

For an overview of genotypic diversity maintenance methods 
derived in evolutionary computation research (Eiben and Smith, 
2003) and applied to ER studies, with insights from comparisons 
to behavioral diversity methods, the reader is referred to the 
review of Mouret and Doncieux (2012).

2.2. evolutionary Policy Transfer
Policy (behavior) transfer, or transfer learning, is a method to 
speed-up and improve learning by leveraging knowledge from 
learning in related but simpler tasks. That is, learned informa-
tion is reused and shared between a source and target tasks, 
where target tasks are used as a starting point for learning new 
behaviors (Pan and Yang, 2010). Policy transfer has been widely 
studied in the context of Reinforcement Learning (RL) methods 
(Sutton and Barto, 1998), where various studies have consist-
ently demonstrated that transferring knowledge learned on a 
source task accelerates learning and increases solution quality 
in target tasks by exploiting relevant prior knowledge (Taylor 
and Stone, 2009).

Policy transfer used in company with various RL methods has 
been applied to boost solution quality in various single-agent 
tasks including pole-balancing (Ammar et  al., 2012), game-
playing (Ramon et al., 2007), robot navigation, as well as multia-
gent tasks including predator-prey (Boutsioukis et  al., 2012). 
For such single and multiagent tasks, policy transfer is typically 
done within the same task domain for varying task complexity 
(Torrey and Shavlik, 2009) and less frequently between differ-
ent task domains (Bou-Ammar et al., 2015). Recently, there has 
been work investigating the efficacy of using policy transfer in 
company with Evolutionary Algorithms (EAs) (Eiben and Smith, 
2003) to boost evolved solution quality of evolved genotypes 
with various representations. For example, Doncieux (2014) 
used Neuro-Evolution (NE) (Floreano et  al., 2008) to search 
for effective Artificial Neural Network (ANN) (Haykin, 1995) 
controllers in a simulated robot ball collecting task. This study 
investigated several methods for extracting behavioral features 
shared between varyingly complex versions of the task, where 
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extracted features were used as stepping stones to shape rewards 
in the evolution of robot controllers transferred to more complex 
versions of the ball collecting task.

Moshaiov and Tal (2014) used Multi-Objective Evolutionary 
Algorithms (Deb, 2001b) to devise a method termed Family 
Bootstrapping to evolve groups of complementary ANN con-
trollers for robot navigation tasks. These controllers were then 
used as an evolutionary starting point for controller evolution 
in navigation tasks with different objectives, where more effec-
tive navigation behaviors were evolved as a result. However, 
using NE to facilitate collective behavior transfer has received 
relatively little attention, with notable exceptions that include 
the following.

Verbancsics and Stanley (2010) used a variant of Hyper-
Neuro-Evolution for Augmenting Topologies (HyperNEAT) 
(Stanley et al., 2009) called HyperNEAT Bird’s Eye View (BEV) 
that encoded the geometric relationships of task objects to facili-
tate the transfer of evolved behaviors. The authors demonstrated 
collective (keeper agent team) behavior transfer in a keep-away 
soccer (Stone et  al., 2006a) task, elucidating that behaviors 
evolved in source tasks did not need to be adapted before being 
transferred to target tasks with varying agent numbers and field 
sizes. Furthermore, keeper-team behaviors evolved and trans-
ferred to increasingly complex keep-away tasks were found to 
be comparable in average task performance to keeper-team poli-
cies derived with RL methods and policy transfer (Stone et al.,  
2006b; Whiteson and Stone, 2006).

Verbancsics and Stanley (2010) also used HyperNEAT to 
demonstrate successful transfer of collective behaviors between 
Knight’s Joust, which is a multiagent predator-prey task variant 
(Taylor et al., 2010), and keep-away soccer tasks. The efficacy of 
this policy transfer method was supported by improved task per-
formance on target tasks given further behavior evolution. This 
method was supported by prior work (Bahceci and Miikkulainen, 
2008) that evolved behaviors of computer board-game playing 
agents, where indirectly encoded representations of evolved 
behaviors facilitated effective agent behavior transfer between 
games of increasing complexity (board size).

In related research, Taylor et  al. (2006) used the Neuro-
Evolution for Augmenting Topologies (NEAT) method (Stanley 
and Miikkulainen, 2002) to further evolve a population of ANN 
controllers already evolved for a source keep-away soccer task. 
The authors demonstrated that biasing and further evolving a 
fittest population of controllers for more complex versions of 
keep-away significantly decreased evolution time and achieved a 
solution quality that could not have been achieved had keep-away 
behaviors been evolved from scratch.

Subsequent work by Taylor et al. (2010) addressed the chal-
lenge of ensuring that a behavioral solution, derived in a source 
task could be meaningfully transferred to be a workable solution 
in a dissimilar and more complex target task. Hence, a mapping 
function is required so that learned behaviors are transferable 
between tasks with different states and state-action variables. 
Taylor et  al. (2010) derived the inter-task mappings for policy 
search method to transfer populations of control policies (ANN 
controllers) between the keep-away soccer, knight’s joust, and 
server job scheduling (Whiteson and Stone, 2006) tasks. This 

method was successfully applied with manually coded inter-task 
mapping functions as well as mapping functions that were only 
partially available or learned before behavior transfer. Results 
indicated that learning time in target tasks was significantly 
reduced and transferred behaviors out-performed those that did 
not use policy transfer, that is, behaviors learned from scratch.

A common feature of these studies was the use of fitness 
functions (Eiben and Smith, 2003), or objective-based search 
to direct behavior evolution. That is, previous work has only 
demonstrated the efficacy of evolutionary policy transfer given 
objective-based search to direct controller evolution. While 
such studies elucidate the benefits of objective-based evolution-
ary search coupled with policy transfer for single-agent and 
relatively simple multiagent tasks, the impact of other (non-
objective) evolutionary search methods such as phenotypic and 
genotypic diversity maintenance (Mouret and Doncieux, 2012) 
used in company with policy transfer remains unknown. This 
is especially the case for collective robotic systems that must 
accomplish complex collective behavior tasks.

That is, previous work has only tested single-agent tasks such 
as robot navigation (Moshaiov and Tal, 2014) and object collec-
tion (Doncieux, 2014) and simple multiagent tasks using few 
agents (Taylor et al., 2006; Verbancsics and Stanley, 2010), where 
non-objective evolutionary search methods were not considered.  
The following section thus overviews recent research in non-
objective search (genotypic and phenotypic diversity mainte-
nance) methods in the context of evolutionary controller design.

3. MeThODs

This study’s research objective was to investigate the impact of 
objective (Section 3.3) versus non-objective (Sections 3.4–3.5) 
based search to direct the NE process coupled with collective 
behavior transfer across increasingly complex keep-away tasks. 
Specifically, the evolutionary search process of HyperNEAT 
is driven by either objective-based search (a fitness function) 
(Eiben and Smith, 2003) or by non-objective-based search. The 
non-objective-based approaches investigated in this study are 
the search for behavioral (Lehman and Stanley, 2011a; Mouret 
and Doncieux, 2012) and genotypic (Brameier and Banzhaf, 2002; 
Ekárt and Németh, 2002; Lehman et  al., 2013; Mueller-Bady 
et al., 2016; Salah et al., 2016) novelty, and hybrids of behavioral 
novelty search, genotypic novelty search, and objective-based 
search (Gomes et al., 2015). This study implements five variants 
of HyperNEAT, where each variant differs in terms of how neuro-
evolutionary search is directed. Table 1 presents the five variants 
of each method. These variants were selected to elucidate how 
policy transfer can be integrated into HyperNEAT to speed-up 
training and improve task performance in increasingly complex 
keep-away soccer tasks (Section 3.6).

The following sections briefly outline the heuristic taker 
controller, and the application of HyperNEAT to keeper-team 
controller evolution.

3.1. Taker-Team heuristic controller
Each taker agent executes the same fixed heuristic behavior for 
the duration of each simulation task trial. A taker agent is able to 
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TaBle 1 | HyperNEAT variants for evolving keep-away behavior in the source 
task.

Variant name Variant description

OS Objective-based HyperNEAT (Section 3.3)
NS Novelty search (Section 3.4.1)
ONS Hybrid novelty-objective based search (Section 3.4.2)
GNS Genotypic novelty search (Section 3.5.1)
OGN Hybrid GNS-objective based search (Section 3.5.2)

source task Keep-away description
3vs2 Three keepers and two takers

Target task Keep-away description
4vs3 Four keepers and three takers
5vs3 Five keepers and three takers
5vs4 Five keepers and four takers
6vs4 Six keepers and four takers
6vs5 Six keepers and five takers

Evolved behaviors are then transferred to incrementally complex target tasks.

algOriThM 1 | Taker Team Heuristic Controller.

Initialize agent positions, assign IDs
Read taker IDs
repeat
For timeStep ∈ episodeDuration do
   if agentID ≤ 2 then
      nextPosition ← predict(nextBallPosition)
      policy ← moveTo(nextBallPosition)
   else agentID > 2
      nextPosition ← predict(mostOpenSpace)
      policy ← moveTo(mostOpenSpace) + Intercept(Ball)
Until terminalState
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gain control of the ball by either intercepting the ball or tackling 
the keeper agent with the ball. In the former case, a taker moves 
to block the ball before it reaches it the receiving keeper. In the 
latter case, a taker gains control of the ball via the agent colliding 
with the keeper. In both cases, the simulation task trial ends and 
the time (as a portion of maximum task trial length) that the 
keepers had control of the ball is recorded for the purposes of 
calculating average keeper task performance at the end of the 
run (Table 3). Algorithm 1 formally describes the taker team 
controller.

3.2. hyperneaT: hypercube-Based neaT
Hypercube-based NEAT (HyperNEAT) (Stanley et  al., 2009) 
is an indirect (generative) encoding neuroevolution method 
that extends NEAT (Stanley and Miikkulainen, 2002) and uses 
two networks, a Composite Pattern Producing Network (CPPN) 
(Stanley, 2007) and a substrate (ANN).

The CPPN is the generative encoding mechanism that indi-
rectly maps evolved genotypes to ANNs and encodes pattern 
regularities, symmetries, and smoothness of the geometry of a 
given task in the form of the substrate. This mapping functions 
via having coordinates of each pair of nodes connected in the 
substrate fed to the CPPN as inputs. The CPPN outputs a value 
assigned as the synaptic weight of that connection and a value 
indicating whether that connection can be expressed or not. 
HyperNEAT uses the evolutionary process of NEAT to evolve 

the CPPN and determine ANN fitness values. The main benefit 
of HyperNEAT is scalability as it exploits task geometry and thus 
effectively represents complex solutions with minimal genotype 
structure (Stanley et  al., 2009). This makes HyperNEAT an 
appropriate choice for evolving complex multiagent solutions 
(Verbancsics and Stanley, 2010; D’Ambrosio and Stanley, 2013).

HyperNEAT was selected as this study’s indirect encoding 
neuroevolution method since previous research indicated that 
transferring the connectivity patterns (Gauci and Stanley, 2008) 
of evolved behaviors is an effective way for facilitating transfer 
learning in multiagent tasks (Bahceci and Miikkulainen, 2008; 
Verbancsics and Stanley, 2010). That is, HyperNEAT evolved 
multiagent policies can be effectively transferred to increasingly 
complex tasks (Stone et  al., 2006a) without further adaptation 
(Verbancsics and Stanley, 2010) and that transferred behaviors 
often yield comparable task performance to specially designed 
learning algorithms (Stone et al., 2006b).

HyperNEAT’s capability to evolve controllers that account 
for task geometry, symmetry, and regularity also makes it 
appropriate for deriving controllers that elicit behaviors robust 
to variations in state and action spaces (Risi and Stanley, 2013) 
and noisy, partially observable multiagent task environments 
(Metzen et al., 2008).

Previous work using evolutionary policy transfer in 
RoboCup keep-away (Verbancsics and Stanley, 2010; Didi 
and Nitschke, 2016a,b) demonstrated that HyperNEAT is an 
appropriate controller evolution method and evolves signifi-
cantly higher quality behaviors compared to other NE methods 
such as NEAT (Stanley and Miikkulainen, 2002). Hence, 
HyperNEAT was selected for keep-away controller evolution 
in this study. Specifically, an extension to HyperNEAT called 
Birds Eye View HyperNEAT (HyperNEAT-BEV) (Verbancsics 
and Stanley, 2010) was for keep-away behavior evolution and 
to better facilitate behavior transfer from source to target keep-
away tasks (Section 3.7).

3.2.1. HyperNEAT Keeper-Team Controller
The key feature of HyperNEAT evolved controllers is that 
HyperNEAT evolved a CPPN as the mapping function 
between each keeper agent’s sensory inputs and motor outputs. 
HyperNEAT evolved keeper teams were homogenous, meaning 
all keepers used the same ANN controller. The CPPN has five 
inputs, four coordinate inputs, and a bias node with a constant 
value of 1.0 (Figure 1B). The coordinates x1, y1, x2, and y2 are of 
two sampled nodes (node 1 and node 2). That is, the x, y coordi-
nates of node 1 on the input of the substrate network and the x, y 
coordinates of node 2 on the output of the substrate network. The 
CPPN has two outputs, which are synaptic weight values assigned 
to the connection between node 1 and node 2, and a connection 
expression value, Link Expression Output (LEO) (Verbancsics and 
Stanley, 2011), which determines whether a connection can be 
created or not created.

To implement HyperNEAT controller evolution, we use 
methods from previous work to represent the current keep-away 
task state, which includes the virtual field size, and the relative 
positions of the ball, taker, and keeper agents. Specifically, the 
keep-away state representation uses the Birds Eye View (BEV) 
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FigUre 1 | (a) Substrate network encoding virtual field (20 × 20 grid of inputs and outputs). (B) Connections from pairs of nodes in the substrate are sampled and 
the coordinates passed as inputs to the CPPN, which then outputs the synaptic weight (connecting input and output layers in the substrate). (c) Substrate input 
layer (20 × 20) corresponding to bottom layer in sub-figure (a). (D) Substrate output layer (20 × 20) corresponding to top layer in sub-figure (a). Note: this figure 
assumes 3vs2 keep-away, though any keep-away task is applicable. See text (Section 3.2.1) for explanation.
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extension to HyperNEAT (HyperNEAT-BEV) (Verbancsics and 
Stanley, 2010).

Given that HyperNEAT-BEV uses indirect encoding it can 
represent changes in task complexity without changing genotype 
representation (Verbancsics and Stanley, 2010). A 20 × 20 keep-
away field was encoded on a two-dimensional substrate with 
20 × 20 input layer and 20 × 20 output layer with coordinates in 
the x, y plane in the range of [−1.0, 1.0], where a 400 × 400 input-
output vector yielded 160,000 possible connections. Each square 
of the field was represented by a node in the substrate network.  
A keeper’s position was marked with the value 1.0 and a taker 
with the value −1.0.

In task trial simulation, straight line paths were calculated 
from the keeper with the ball to all other agents. If the path 
intersected another keeper then this node to node connection 
was assigned a 0.3 value. If the path intersected a taker a −0.3 
value was assigned to this node to node connection. Otherwise, 
a 0.0 was assigned if there was no agent in that grid square. Thus, 
the number of keepers was indicated by the number of squares 
having a 1.0 value.

Figure 1 presents an example of a HyperNEAT evolved CPPN 
(Figure  1B) coupled with its substrate network (Figure  1A). 

This substrate encodes the task environment state as a 20 × 20 
grid of inputs and a grid of 20  ×  20 outputs. Connections 
between input and output nodes had a value in the range: 
[−1.0, 1.0]. Connections from pairs of nodes in the substrate 
network are sampled and the coordinates passed as inputs to 
the CPPN, which then outputs the synaptic weight of each 
sampled connection (connections between the substrate input 
and output layers depicted in Figure 1A). The substrate input 
layer corresponds to the bottom layer in Figure 1A, where grid 
cells contain values: 1: Keeper, −1: Taker, −0.3: Cell between a 
keeper a ball and a taker, 0.3: Cell between a keeper with a ball 
and its teammates, or 0 (white space in grid). The substrate 
output layer corresponds to the top layer in Figure 1A, where 
a0, a1, and a2 represent activation values for three keepers. 
The keeper with the highest activation value receives a ball 
pass from the keeper with the ball. If the keeper with the ball 
has the highest activation value, then this keeper holds the 
ball. Note that Figure 1 is an example given 3vs2 keep-away, 
though any keep-away task is applicable. The CPPN input and 
output nodes used linear and bipolar functions, respectively, 
and the hidden layer nodes used the activation functions listed  
in Table 3.
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3.3. Objective-Based Fitness Function
The OS variant of HyperNEAT (Table 1) uses a fitness function 
specifically designed to direct behavior evolution in the keep-
away soccer task (Stone et al., 2006a).

3.3.1. OS Variant: Objective-Based Search
Objective-based search uses the following fitness function that 
computes mean episodic length using equation (1):

 
fit

N
Tx

N

j=
=

∑1 .
j 1  

(1)

The length of an episode x is denoted by Tx, and N is the 
number of task trials, Tj is the length of task trial j. Task trial 
time steps (iterations) are based on the RoboCup Soccer Server2 
discrete time cycles, where each iteration is 100 ms of simula-
tion time. A task trial ends when the ball goes out of field of 
play or if an opponent (taker agent) gets possession of the ball 
(Section 3.1).

3.4. evolutionary search with Behavioral 
Diversity Maintenance
The NS and ONS variants of HyperNEAT (Table 1) incorporated 
behavioral diversity maintenance as a means to guide the evolu-
tionary search processes. The NS variant uses only Novelty Search 
(Section 3.4.1), whereas the ONS variant uses a hybrid of NS and 
objective-based search (Section 3.4.2) to direct the search process.

Encouraging behavioral diversity is a well-studied concept in 
neuroevolution and has been used to discover novel solutions 
and increase solution performance to out-perform controller 
evolution approaches that encourage genotypic diversity in a 
wide range of tasks (Lehman and Stanley, 2010a; Mouret and 
Doncieux, 2012; Gomes and Christensen, 2013a; Urbano and 
Georgiou, 2013).

3.4.1. NS Variant: Novelty Search
Novelty search (NS) (Lehman and Stanley, 2011a) is based on 
the notion of behavioral diversity maintenance where a search 
for novel phenotypes (behaviors) replaces the fitness function 
of evolutionary search. That is, a genotype is more likely to be 
selected for reproduction if its encoded behavior is sufficiently 
different from all other behaviors produced thus far in an evo-
lutionary run.

Previous work indicated that controllers evolved with NS 
functioned in a range of tasks of varying complexity (Velez and 
Clune, 2014) and such controllers consistently out-performed 
controllers evolved with objective-based search in a range of ER 
tasks (Mouret and Doncieux, 2012; Gomes et al., 2015, 2016).

Given this, NS was selected as the behavioral diversity mecha-
nism to be applied as the second (NS) variant of HyperNEAT 
(Table  1). In this study, the function of NS is to consistently 
generate novel team (keep-away) behaviors. Hence, we define 
team behavior in terms of properties that potentially influence 

2 Experiments used RoboCup Keep-Away version 6 (Taylor et al., 2010). Source code 
and executables can be found at: http://sourceforge.net/projects/sserver/

team behavior but are not directly used for task performance 
evaluation.

To measure behavioral novelty, we use the following three 
normalized task-specific behavioral vectors, where the addition 
of these vectors always sums in the range: [0, 1]:

 1. Average number of passes;
2. Average dispersion of team members;
 3. Average distance of the ball to the center of the field.

This team level behavioral characterization has been used 
previously (Gomes et  al., 2014) and out-performs individual 
behavioral characterizations and fitness-based search. Behavioral 
distance is computed using the Euclidean distance (equation (2)):

 δi i ijy x y( , ) = −x    (2)

where, xi and yij are normalized behavioral characterization 
vectors of two genotypes. The novelty is then quantified by 
equation (3):
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where, δx is the behavioral distance between genotypes x and y  
(equation (2)), based on the behavioral characterization vec-
tor, where xj is the jth behavior of genotype x, yij is the jth 
behavior property of the ith nearest neighbor of genotype x.

For the second variant, this novelty function (equation  (3)) 
replaces the fitness function of HyperNEAT. The novx then is 
derived from the mean of behavioral distance of an individual 
with k nearest neighbors. The parameter k is specified by the 
experimenter to represent the number of nearest neighbors, 
where k = 15 has been widely used in novelty search experiments 
(Gomes et al., 2015). Some researchers have used k = 20 (Liapis 
et  al., 2015) and k in the range of Bahceci and Miikkulainen 
(2008), Cuccu et  al. (2011), and Gomes et  al. (2015) though it 
is unclear if values were derived experimentally. Gomes et  al. 
(2015) discovered that the choice of k value depends on the 
type of novelty archive used and that k =  15 yielded relatively 
good performance across all tested archive types. Hence, in this 
study, we use k = 15. As in related work (Lehman and Stanley, 
2011a), the novelty of newly generated genotypes is calculated 
with respect to previously novel genotypes (behaviors) stored 
in the novelty archive, where archived behaviors are ranked by 
diversity. In this study the maximum archive size is 1,000, where 
a maximum of 10 novel behaviors are added to the archive each 
generation (Table 2).

3.4.2. ONS Variant: Novelty-Objective Search 
Hybrid
A hybrid function combining non-objective-based search 
(NS) and objective-based search (fitness function) to drive the 
evolutionary process was selected as the next variant (ONS) of 
HyperNEAT (Table 1).

To elicit further performance gains and increase solution 
quality across a broad range of tasks, various researches have 
investigated such hybrid functions. For example, using a weighted 
balance between a fitness function and novelty metric to direct 
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TaBle 2 | Neuro-evolution (NE) and novelty search (NS) parameters and 
settings.

neuro-evolution (ne) parameters setting

Population size 150
Generations (source task) 30
Generations (target task) 70
Generations (no policy transfer) 100
Maximum number of species 5
Maximum species population 30
Weight mutation ±0.01
HyperNEAT weight value range [−5.0, 5.0]
Mutation rate 0.05
Survival threshold 0.2

novelty search (ns) parameters setting
NS nearest neighbor k 15
NS-objective hybrid ρ 0.4
Maximum archive size 1,000
Maximum novel behaviors added to archive 10 (per generation)
Compatibility threshold 3
Behavioral threshold 0.03
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the best results. All other novelty search parameters are the same 
as used for NS variant (Section 3.4.1).

3.5. evolutionary search with genotypic 
Diversity Maintenance
Previous work has demonstrated the benefits of maintaining 
genotypic diversity as a means to boost the quality of evolved 
behaviors for various ER tasks (Floreano et al., 2008; Doncieux 
et al., 2011) and has been well explored across a broad range of 
tasks in more general evolutionary computation research (Eiben 
and Smith, 2003). However, the impact of using genotypic 
diversity maintenance as a means to direct the evolutionary 
search process, that is, selecting for novel genotypes instead of 
phenotypes, as is done for novelty search (Lehman and Stanley, 
2011a) has received relatively little research attention (Didi and 
Nitschke, 2016a,b).

The following describes the genotypic diversity methods 
used to direct evolutionary search processes of HyperNEAT, 
genotypic novelty search (Section 3.5.1), and a hybrid of 
objective-based search and genotypic novelty search (Section 
3.5.2). One may note that these genotypic diversity maintenance 
approaches work in addition to the speciation mechanism 
of NEAT (Stanley and Miikkulainen, 2002) (also used by 
HyperNEAT) that encourages diversity and increased explora-
tion of genotype search space.

3.5.1. GNS Variant: Genotypic Novelty Search
The next variant (GNS) uses genotypic diversity maintenance 
to drive the evolutionary search process (Table 1). That is, the 
GNS variant is non-objective-based search similar to NS (Section 
3.4.1) except that a genotype diversity function is used instead 
of behavioral diversity, meaning that the evolutionary search 
process of HyperNEAT selects for novel genotypes.

The genotypic distance between two genotypes is measured 
using linear combination of Excess (E) and Disjoint (D) genes 
(Stanley and Miikkulainen, 2002), and a mean weight difference 
of matching genes (Risi et al., 2010) (W in equation (5)). Excess 
genes are those non-matching genes that are derived from one 
parent later than all the genes of the other parent genotype, 
whereas disjoint genes are any other non-matching genes from 
either of the two parent genotypes:

 
δ g a b c E

N
c D
N

c W( ), = + +1 2
3

 
(5)

where, N is the number of genes in the longest genotype of the 
population, then coefficients c1, c2, and c3 are parameters used to 
adjust the weighting of the three factors E, D, and W, respectively. 
The sparseness (Sg) of genotype x in population evolution is com-
puted by equation (6):
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where, yi is the ith nearest neighbor of x, k is the number of near-
est neighbors of x and δg is the compatibility distance measure 
(equation (6)).

the search process (Cuccu et  al., 2011), restarting converged 
evolutionary runs using novelty search (Cuccu et  al., 2011), 
a minimal criteria (for survival and reproduction of control-
ler behaviors) novelty search (Lehman and Stanley, 2010b),  
a progressive minimal criteria incrementing the requirements  
for reproduction throughout the evolutionary process (Gomes 
et al., 2012) and novelty search combined with speciation tech-
niques (Inden et al., 2013), with the result of yielding optimal and 
near optimal solutions in various tasks including pole-balancing, 
maze solving, and quadruped gait evolution tasks.

Similarly, Lehman and Stanley (2010b) found that their mini-
mal criteria novelty search evolved solutions more consistently 
than objective base search. Gomes et al. (2012) found that their 
progressive minimal criteria novelty metric out-performed pure 
NS in a swarm robotics task. However, it has also been found that 
an objective-based search can out-perform NS on the deceptive 
tartarus task (Cuccu et al., 2011) as well as pole-balancing and a 
visual discrimination task (Inden et al., 2013).

In line with previous research on hybrid NS and fitness 
metrics supporting performance gains in various tasks (Cuccu 
et al., 2011), including multi-robot ER tasks (Gomes et al., 2012), 
the ONS variant uses a behavioral diversity metric that linearly 
combines NS with the objective-based search (fitness func-
tions) native to HyperNEAT. Thus, we use a linear combination 
of fitness and novelty scores (Gomes et  al., 2014), specified in  
equation (4):

 score fit novi i i= + ( ). ρ ρ. −1  (4)

where, fiti  and novi  are normalized fitness and novelty metric, 
respectively. Then, ρ ∈ [0,1] is a parameter selected by the experi-
menter to control the relative contribution of each metric to the 
selection pressure.

Previous work demonstrated that a medium to high novelty 
weight 50–80% on average yielded the most desirable results 
(Cuccu and Gomez, 2011; Gomes et al., 2012, 2013, 2014; Gomes 
and Christensen, 2013a). Similarly, exploratory experiments in 
this study found that a novelty weight of 40% (Table 2) yielded 
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In these experiments, we use the above measure of sparseness 
(equation  (6)) with and without policy transfer to ascertain if 
genotypic diversity influences selection pressure toward good 
solutions in the search space. The same nearest neighbor and 
archive parameters are used for this genotypic diversity mainte-
nance function as used for novelty search (Section 3.4.1).

3.5.2. OGN Variant: Hybrid Objective-Genotypic 
Novelty Search
The final variant (OGN) uses a combination of objective-based 
search and the GNS variant (Section 3.5.1) to direct the evolu-
tionary search process (Table 1).

The OGN variant is a hybrid function that also uses equa-
tion (4), except that novi  now represents the genotype diversity 
metric. Similarly, ρ ∈ [0, 1] controls the relative contribution of 
fitness versus genotypic diversity-directed search. We also found 
that a genotypic diversity weight of 40% yielded favorable results 
for this case study (Table 2).

However, in this case, equation  (6) specifying the genotype 
population’s mean sparseness (normalized into the range  
[0, 1]) replaces the normalized novelty function value novi  in 
equation (4). All other parameters are the same as used for the 
genotypic diversity maintenance-directed search.

3.6. Keep-away Task complexity
A key goal of this research is to evaluate various behavior evolu-
tion methods across tasks of increasing complexity (Section 1);  
hence, it is necessary to define complexity in the keep-away 
domain. Previous work indicated that keep-away task com-
plexity increases with the number of taker and keeper agents 
(Whiteson et al., 2005; Stone et al., 2006a; Didi and Nitschke, 
2016b). Complexity refers to task difficulty and thus the level of 
sophistication required by evolved behaviors to solve the task. 
Increasing the number of takers correlates with making success-
ful passes between keeper agents more difficult. Similarly, more 
agents on the keeper team necessitates increased controller 
complexity for each keeper to appropriately process increased 
sensory input, as the keeper controllers must process many 
more possibilities for passing the ball versus advantageous field 
positions. Specifically, more keepers must be accounted for and 
given a fixed field size, the potential for interference between 
keepers also increases.

Consider, at each simulation iteration of TvsK keep-away  
(T and K denote the number of keepers and takers, respectively, 
where: T ≥ 2, K ≥ 1), each keeper must process the N × N virtual 
field space, accounting for I −1 keeper teammates, J takers,  
and the ball. Equation (7) specifies the calculation of keep-away 
task (x) complexity:

 
Complexity x T

K
OBJ( ) = ∗

 
(7)

where, T and K are the total number of taker and keeper agents, 
respectively. The ratio of taker to keeper agents is multiplied 
by the total number of dynamic objects (all keepers, takers, 
and the ball) on the field (OBJ). This is all sensory information 
each keeper must process to select an action at each simulation 

iteration. Given the range of keep-away tasks tested in this study 
(Table 1), OBJ was in the range: Brameier and Banzhaf (2002) and 
Cuccu and Gomez (2011). Complexity values were normalized 
to the range: [0, 1], where the minimum and maximum taker to 
keeper ratios were determined by the range of keep-away tasks 
tested. Table 4 presents the keep-away tasks ordered from least 
complex (4vs3) to most complex (6vs5) and corresponding task 
complexity values.

As with many collective behavior tasks, we consider keep-
away to be complex, with an underlying fitness landscape that 
increases in complexity with the number of agents on the field. 
That is, as the number of agents increases, the amount of sensory 
information that must be processed into effective motor outputs 
increases. This is reflected by an increase in task dimensional-
ity and complexity (ruggedness and modality (Eiben and Smith, 
2003) of the fitness landscape) that makes the discovery of 
effective keep-away behaviors less probable for objective-based 
(exploitative) evolutionary search processes.

Dissimilar to previous tasks that have tested behavioral 
diversity maintenance methods (Lehman and Stanley, 2011a; 
Gomes et  al., 2015), we consider the keep-away task to be  
non-deceptive. To establish that keep-away is non-deceptive, 
consider that keeper-team fitness is equated with the total time 
that the ball is under keeper-team control, where fitness is 
rewarded at the end of a simulation task trial (Section 3.3). That 
is, the nature of the keeper-away task and the fitness function 
negated the possibility of a deceptive case. For example, there 
was no possibility for a task instance where a keeper executed 
behaviors that were deleterious to team fitness, but would be an 
essential stepping stone to the eventual evolution of beneficial 
behaviors. That is, deceptive fitness landscapes3 are characterized 
by low fitness regions that are necessary stepping stones for 
an evolutionary process to reach desired high fitness regions 
(Lehman and Stanley, 2011a).

3.7. collective Behavior (Policy) Transfer
For each of the five variants of HyperNEAT (Section 3.2), we 
first evolved keep-away behavior in the 3vs2 task and then 
transferred evolved behavior as a starting point for further evo-
lution in more complex keep-away tasks. This section describes 
the method used for collective behavior policy transfer in this 
study’s experiments (Section 4).

As in related research, the Birds Eye View (BEV) extension 
to HyperNEAT (Verbancsics and Stanley, 2010) was used to  
facilitate evolved behavior transfer across increasingly complex 
tasks. That is, a key advantage of HyperNEAT-BEV is that geo-
metric relationships encoded in evolved CPPNs are extrapolated 
for varying task environment complexity. For example, as the 
number of agents changes between keep-away tasks, the task 
complexity also changes (Section 3.6), though connectivity 
patterns encoded in evolved CPPNs have been demonstrated as 
readily transferable across different tasks (Verbancsics, 2011).

3 It is important to note that there is currently no quantitative, testable, definition 
of deception, that allows experimenters to quantify the degree of deception of a 
given task.
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TaBle 3 | HyperNEAT CPPN functions, keep-away simulation parameters and 
settings.

hyperneaT cPPn Functions

Identity x
Gaussian e x− .2 5 2

Bipolar sigmoid
2

1 4 9+ − . −
e x 1

Absolute value |x|
Sine Sine(x)

Keep-away simulation parameters Parameter setting
Number of runs 20
Iterations per task trial 4,500
Task trials per generation 30
Maximum task trial length 18 s
Agent positions Random
Environment size 20 × 20 grid
Agent speed (per iteration) 1 grid cell
Ball speed (per iteration) 2 grid cells
Task performance Maximum keeper-team ball hold time  

(for one run of a given method and task)
Policy transfer threshold Average maximum task performance  

for given task without policy transfer

algOriThM 2 | Collective Behavior Policy Transfer.

Current evolved population = Population of Πsource networks
For each genotype (CPPN) in Πsource do
   Generate a network with same number of inputs and outputs as in the 
Πsource

   Add the same number of hidden nodes to Πtarget as in Πsource

   For each pair of nodes (ni, nj) in Πtarget do
      if ∃ link Li j ∈ Πsource then
      add link Li,j to Πtarget with i, j

t
i, j

sw = w  in Πsource

TaBle 4 | Normalized task complexity calculated for each keep-away task.

Keep-away task version Keep-away normalized task complexity

5vs3 0.54
4vs3 0.60
6vs4 0.73
5vs4 0.80
6vs5 1.0
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In preliminary parameter tuning experiments done in previ-
ous research (Didi and Nitschke, 2016b), several approaches 
for collective behavior policy transfer were tested, though the 
following approach was found to be the most effective for all 
HyperNEAT variants and all keep-away tasks tested in this study. 
Specifically, the entire evolved population was transferred from 
the source task (at the final generation of neuroevolution) and 
set as the initial population for keep-away behavior evolution in 
the target task. This approach was selected given its similarity to 
incremental learning (Gomez and Miikkulainen, 1997), which 
has been demonstrated as beneficial for evolving effective solu-
tions to increasingly complex tasks.

This approach is presented in algorithm 2, where collective 
(keep-away) policy transfer takes place between the source task 
(3vs2 keep-away) and target tasks of differing complexities 
(Table 1). That is, the final HyperNEAT evolved population of 
CPPNs is copied as the initial population in the given target task, 
where varying behavioral complexity is encoded in the CPPN 
but the substrate network representation remains constant 
(Figure 1) during policy transfer.

4. eXPeriMenTs

This study’s experiments evaluated the effectiveness and  
efficiency (Section 1) of five variants of HyperNEAT for evolving 
keep-away behavior in a source task (3vs2 Keep-Away) and then 
transferring evolved behaviors to progressively more complex 
target tasks. That is, 4vs3, 5vs3, 5vs4, 6vs4, and 6vs5 keep-away 
(Table 1).

4.1. experiment goals
Experiments were designed to address this study’s key objec-
tive (Section 1), to ascertain the most appropriate NE method 
for facilitating evolved collective behavior policy transfer to 
boost solution quality. High-quality solutions are those evolved 
behaviors yielding the highest average maximum task perfor-
mance. In these experiments, RoboCup keep-away (Taylor et al., 
2010) is the collective behavior case study, where we measure 
the effectiveness and efficiency of evolved keep-away behaviors 
across increasing complex keep-away tasks (Section 3.6).

Effectiveness is improved average task performance after 
behavior transfer between source and target tasks, where 
transferred keep-away behaviors are further evolved. Average 
task performance is measured as the total time for which the 
ball is under control of the keeper team, calculated as the 
maximum taken at the end of each run and averaged over all 

runs. Efficiency is the average number of generations taken by 
transferred behaviors to reach a task performance threshold. The 
task performance threshold for collective behavior policy trans-
fer is the average maximum task performance (over 20 runs) 
of behaviors evolved in a given task without policy transfer 
(Table 3).

4.2. experiment Types
Non-policy transfer experiments were those in which keep- 
away behaviors were evolved in each of the target keep-away 
tasks for 100 generations using the five variants (Table  1) of 
HyperNEAT (Figure 2). That is, this is the case where no policy 
transfer took place and keep-away behaviors were evolved from 
scratch in all tasks. Policy transfer experiments were those where 
keep-away behaviors were first evolved in the source task for 
three keepers versus two takers (3vs2) on the 20 × 20 simulated 
keep-away field for 30 generations. Evolved behaviors were then 
transferred and further evolved in each target task (Table  1)  
for another 70 generations, where 70 generations was selected 
for consistency (number of generations in total) in the com-
parison between experiments with policy transfer and without 
policy transfer.

4.3. collective (Keep-away) Behavior 
evaluation
For both policy transfer and non-policy transfer experiments, 
average fitness per genotype (keep-away team) was calculated 
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FigUre 2 | Average normalized maximum task performance for HyperNEAT variants with (left column) and without (right column) policy transfer in each target task. 
OS, objective-based; NS, Novelty Search; ONS, Objective-Novelty hybrid; GNS, Genotypic novelty search; OGN, Objective-GNS hybrid. Averages are over 20 runs. 
Bold Ons indicates that the ONS variant yields a higher average task performance (with statistical significance, Mann–Whitney U test, p < 0.05) for all tasks (given 
policy transfer). This significant difference holds for ONS over other variants (with policy transfer) and between ONS (with policy transfer) and all variants (without 
policy transfer).
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over 30 task trials per generation, where the maximum fitness 
was selected after 100 generations and an average maximum was 
calculated over 20 runs. Each task trial tested different (random) 
agent positions and the ball always started in the possession of a 
randomly selected keeper agent.

Figure  2 presents the average maximum task performance 
of each HyperNEAT variant, respectively, in each target task. 
To highlight the benefits of using HyperNEAT to facilitate 

(keep-away behavior) policy transfer, average task performance 
results of non-policy transfer experiments are included for each 
task.

Table  5 presents the average method efficiency of each 
HyperNEAT variant in each target task. Task performance effi-
ciency results from experiments that do not use policy transfer are 
included to further highlight the benefits of using HyperNEAT to 
facilitate policy transfer.
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TaBle 5 | HyperNEAT variant efficiency comparison with policy transfer (PT) and 
no policy transfer (No PT).

Task hyperneaT Os  
threshold

hyperneaT search 
efficiency

no PT PT

4 vs 3 0.662 61 30
5 vs 3 0.687 65 25
5 vs 4 0.650 61 34
6 vs 4 0.645 62 41
6 vs 5 0.614 90 29

Task hyperneaT ns  
threshold

hyperneaT search 
efficiency

no PT PT

4 vs 3 0.580 77 19
5 vs 3 0.591 82 21
5 vs 4 0.574 89 16
6 vs 4 0.560 77 15
6 vs 5 0.559 85 30

Task hyperneaT Ons  
threshold

hyperneaT search 
efficiency

no PT PT

4 vs 3 0.689 80 44
5 vs 3 0.721 71 43
5 vs 4 0.654 66 22
6 vs 4 0.648 88 44
6 vs 5 0.632 63 36

Task hyperneaT gns  
threshold

hyperneaT search 
efficiency

no PT PT

4 vs 3 0.487 63 29
5 vs 3 0.491 86 35
5 vs 4 0.474 81 15
6 vs 4 0.481 80 25
6 vs 5 0.473 54 21

Task hyperneaT Ogn  
threshold

hyperneaT search 
efficiency

no PT PT

4 vs 3 0.500 68 21
5 vs 3 0.521 62 23
5 vs 4 0.494 70 16
6 vs 4 0.481 82 19
6 vs 5 0.480 52 21

OS, objective-based search; ONS, objective-novelty search hybrid; NS,  
novelty search; GNS, genotypic novelty search; OGN, objective-GNS hybrid.
Search efficiency: average number of generations to reach the threshold for  
the given variant. Threshold: average maximum task performance without PT.
Bold values indicate (for each task) variants with the highest average efficiency  
given PT.
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5. resUlTs

To address this study’s research objective (Section 1) and inves-
tigate the impact of objective (Section 3.3) versus non-objective 
(Sections 3.4–3.5) based search on the evolution of collective 
behaviors transferred to increasingly complex keep-away tasks, 
we present results demonstrating comparative method effective-
ness and efficiency.

Effectiveness was improved average task performance after 
behavior transfer between source and target tasks, where 
transferred keep-away behaviors are further evolved for 100 
generations (Table 2). In this case study, task performance was 
a measure of a keep-away team’s capability to control the ball 
and keep it from taker agents. That is, task performance was 
calculated as the total time for which the keeper team had the 
ball in their possession, normalized into the range: [0, 1] and 
averaged over all runs. Normalization was done with respect to 
the average maximum episode length (Table 3), calculated for all 
methods applied to each task.

Efficiency was the average number of generations taken by 
transferred behaviors to reach a task performance threshold. 
The task performance threshold for collective behavior policy 
transfer4 is the average maximum task performance (over 20 
runs) of behaviors evolved in a given task without policy transfer 
(Table 3).

5.1. average Task Performance 
comparison
Figure  2 presents the average maximum task performance 
(normalized to the range: [0.0, 1.0]) for the HyperNEAT variants 
(Table 1), respectively. Comparative box-plots are presented for 
all keep-away tasks with policy transfer (Figure 2, left column) 
and without policy transfer (Figure 2, right column).

Results data were found to be non-parametric using the 
Kolmogorov–Smirnov normality test with Lilliefors correction 
(Ghasemi and Zahediasl, 2012). Mann–Whitney U statisti-
cal tests (p  <  0.05) (Flannery et  al., 1986) were then applied 
in pair-wise comparisons between average task performance 
results yielded by the HyperNEAT variants in each keep-away 
task (Table 1). Statistical tests were applied in pair-wise com-
parisons, with Effect Size (Cohen, 1988) treatment, between 
average task performance results in the following cases, where 
complete overview of all statistical tests is in Appendix A in 
Supplementary Material.

First, comparisons between average task performance results 
yielded by all method variants with and without policy transfer. 
That is, for each task, the average task performance of each vari-
ant of HyperNEAT given policy transfer was compared with each 
variant without policy transfer. Section 5.1.1 outlines all such 
comparisons and the results of statistical tests. Second, average 
task performance comparisons between all method variants in 
each keep-away task where only results given policy transfer were 
considered. Section 5.1.2 outlines all such comparisons and the 
results of statistical tests.

5.1.1. Task Performance Comparison: Policy versus 
No Policy Transfer
Statistical tests were applied in pair-wise comparisons between 
average task performances yielded by each HyperNEAT variant 
with policy transfer and without policy transfer, indicating that, 
for all keep-away tasks, variants with policy transfer yielded a 

4 Collective behavior transfer, behavior transfer and policy transfer are used 
interchangeably.
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significantly5 higher average task performance. Exceptions where 
there was no significant difference between the average task 
performance of method variants are outlined in Appendix A in 
Supplementary Material.

5.1.2. Task Performance Comparison:  
Given Policy Transfer
To evaluate the efficacy of HyperNEAT variants in each target 
task given policy transfer, pair-wise statistical comparisons 
were applied between all method variants for each task. That 
is, where keep-away behavior had been further evolved by a 
given HyperNEAT variant after policy transfer. Comparisons 
of average task performance results for all variants given policy 
transfer, indicated that for all tasks, the ONS variant, given policy 
transfer yielded a significantly higher average task performance 
compared to the other HyperNEAT variants. Exceptions that 
resulted in no statistically significant difference in average task 
performance between pairs of HyperNEAT variants are outlined 
in Appendix A in Supplementary Material.

5.2. average Method efficiency 
comparison
The next set of statistical comparisons was between all method 
variants with respect to method efficiency (Table 5). Specifically, 
statistical tests were applied in pair-wise comparisons between 
average method efficiency results in the following cases.

First, we compared average efficiency results of all method 
variants with and without policy transfer in each task (PT 
and No PT in Table 5, respectively). That is, for each task, the 
average HyperNEAT efficiency for each variant with policy 
transfer was compared to each variant without policy transfer. 
Section 5.2.1 describes these comparisons and statistical 
test results. Second, we compared average efficiency results 
between all method variants given policy transfer in each task. 
Section 5.2.2 presents these comparisons and the results of 
statistical tests.

Method efficiency was measured as the number of generations 
taken by HyperNEAT variants to attain a given task performance 
threshold in each target task. This threshold was the average 
maximum task performance (calculated over 20 runs) without 
policy transfer for a given method and task. When comparing 
average efficiency between methods with and without policy 
transfer, for method variants without policy transfer we simply 
used the task performance threshold itself for the comparison. 
That is, the average number of generations taken to reach the 
average maximum task performance, for a given method in a 
given task, without policy transfer, was compared to the average 
number of generations taken to reach the same threshold for a 
method using policy transfer in the same task.

5.2.1. Efficiency Comparison: Policy Transfer  
versus No Policy Transfer
Statistical tests indicated that for all tasks, a significantly higher 
efficiency was observed for all HyperNEAT variants, given policy 

5 Significant refers to a statistically significant difference in pair-wise comparison 
of two data-sets.

transfer compared to the same method variants without policy 
transfer. Exceptions where there was no significant difference are 
outlined in Appendix A in Supplementary Material.

5.2.2. Efficiency Comparison: Given Policy Transfer
As with task performance comparisons (Sections 5.1.1 and 
5.1.2), statistical tests indicated that given policy transfer, on 
average for all tasks, the OGN variant of HyperNEAT yielded 
a significantly higher average efficiency over the other vari-
ants. Comparisons that resulted in no statistically significant 
difference in method efficiency are outlined in Appendix A in 
Supplementary Material.

6. DiscUssiOn

This section discusses the capacity of each HyperNEAT variant 
(OS, NS, ONS, GNS, and OGN) to balance exploitation versus 
exploration during evolutionary search for facilitating efficient 
evolution of high-quality keep-away behaviors. Exploitation is 
the average maximum task performance of evolved behaviors 
and exploration is the fitness diversity of the fittest evolved 
behavior populations. Efficiency was measured as the number 
of generations (genotype evaluations) for a given method to 
attain task performance thresholds. For a given method variant 
and task, this threshold was calculated as the average maximum 
fitness attained without policy transfer (Section 5.2).

Since previous work (Verbancsics and Stanley, 2010; 
Didi and Nitschke, 2016a,b) and additional experimental 
results (Section 5) have already demonstrated the benefits of 
HyperNEAT behavior evolution coupled with policy transfer, 
this discussion focuses on evolved behavior analysis for policy 
transfer results only. That is, this study’s policy transfer results 
already demonstrate the same benefits as previous policy-
transfer work. For example, jump-start: average task perfor-
mance was improved in the target task after behavior transfer 
from a source task, asymptotic performance: final average 
maximum task performance was significantly higher, and time 
to threshold: the evolutionary time taken to evolve the fittest 
behaviors was reduced given policy transfer (Taylor and Stone, 
2009; Taylor et al., 2010).

This section first discusses relationships between the fittest 
behaviors evolved by each HyperNEAT variant and the com-
plexity of the evolved CPPNs corresponding to these behaviors 
(Section 6.1). The analysis tests a hypothesis that behavioral 
diversity evolves relatively high quality yet simple controllers, 
unhindered by unnecessary redundancy and complexity (Lehman 
and Stanley, 2011a; Gomes et al., 2013).

6.1. network complexity of evolved 
Behaviors
Previous work has examined network complexity of NEAT 
evolved controllers given objective-based and novelty search 
(Lehman and Stanley, 2011a; Gomes et al., 2013), suggesting that 
novelty search evolves high-quality behaviors defined by struc-
turally simple controllers. However, there has been little work 
investigating the complexity of HyperNEAT evolved controllers 
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TaBle 6 | Average normalized complexity of CPPNs corresponding to fittest evolved behaviors, for each HyperNEAT variant and each keep-away task, given behavior 
transfer.

Task average evolved network (cPPn) complexity

Os Ons ns Ogn gns

4vs3 0.516 ± 0.051 0.499 ± 0.055 0.477 ± 0.037 0.544 ± 0.041 0.795 ± 0.039
5vs3 0.521 ± 0.042 0.501 ± 0.035 0.493 ± 0.030 0.556 ± 0.041 0.771 ± 0.42
5vs4 0.531 ± 0.046 0.501 ± 0.030 0.495 ± 0.026 0.559 ± 0.053 0.829 ± 0.053
6vs4 0.538 ± 0.042 0.502 ± 0.041 0.497 ± 0.041 0.556 ± 0.049 0.832 ± 0.066
6vs5 0.539 ± 0.046 0.504 ± 0.051 0.560 ± 0.051 0.560 ± 0.051 0.861 ± 0.048

Bold values indicate variants with the lowest average CPPN complexity (for each task).
There was no statistically significant difference between average complexity values yielded by ONS and NS, but significant difference between NS, ONS, and other variants.
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given evolutionary search driven by behavioral diversity main-
tenance versus objective-based search (Morse et  al., 2013). 
Related research has suggested that as task complexity increases, 
simpler HyperNEAT evolved networks (CPPNs), resulting from 
specially placed neurons and limited connectivity, potentially 
results in higher quality behaviors (Risi and Stanley, 2011; Berg 
and Whiteson, 2013).

With the exception of preliminary work (Morse et al., 2013), 
the impact of behavioral diversity maintenance versus objec-
tive-based search on the complexity of evolved HyperNEAT 
networks as task complexity increases, remains unclear. In this 
study, network complexity is the number of connections and 
neurons (Abu-Mostafa, 1989) of the CPPN corresponding to 
the fittest evolved behavior in each run (equation (8)):

 
E

N
n nx

i

N

c n= +
=
∑1

1

( )
 

(8)

where, N is the number of runs, nc, nn, is the number of network 
connections and hidden nodes, respectively. For clarity, network 
x complexity (E) is normalized to the range: [0.0, 1.0]. A 1.0 
value indicates maximum network complexity as observed for 
behaviors evolved with each HyperNEAT variant.

Table  6 presents, for each keep-away task, an overview 
of average network complexity corresponding to the fittest 
behaviors evolved by each HyperNEAT variant (at generation 
100, Table  2). For each variant, evolved network complexity 
is presented together with SDs, where complexity values for 
each variant are averages calculated over the 20 fittest evolved 
networks taken at the end each run. Table 6 indicates the fit-
test ONS and NS evolved behaviors correspond to CPPNs 
with comparable network complexity (supported by statistical 
comparisons). However, the OS, OGN, and GNS variants all 
evolved significantly higher average network complexity for all 
tasks, where the GNS variant evolved the highest overall network 
complexity.

That is, pair-wise statistical comparisons (Mann–Whitney 
U, p  <  0.05) between average network complexity results, 
indicated that the fittest behaviors evolved by NS and ONS, for 
all tasks, corresponded to significantly simpler networks.6 These 
results lend support to the hypothesis that behavioral diversity 

6 Appendix B in Supplementary Material presents an overview of average complex-
ity yielded for all evolved controllers and statistical test results between average 
controller complexities for all variants.

maintenance search variants (NS, ONS) evolve simple CPPNs 
that encode high-quality behaviors, compared to objective-
based (OS) and genotypic diversity maintenance search variants 
(OGN, GNS).

For a more detailed view, Table 7 presents network complex-
ity and efficiency values corresponding to the fittest behaviors 
evolved by each variant in each keep-away task. As an indica-
tion of how evolved network complexity relates to task perfor-
mance, the left-most column of Table  7 presents the average 
task performance range (in successive five percentile groups) 
that the fittest networks fall into. Also, to indicate how efficient 
each variant was at evolving simple or complex networks, the 
generations column presents the average number of generations 
taken to evolve the given networks.

Table  7 further supports the hypothesis that behavior 
diversity maintenance methods evolve simple and high-quality 
controllers, as for all keep-away tasks, the ONS variant evolved 
minimal average network complexity and the highest average 
task performance. In some tasks, a significantly lower network 
complexity was evolved by the NS variant, but in these tasks 
NS evolved also yielded a lower average task performance. For 
example, in 6vs5 keep-away (the most complex task, Section 
3.6), the fittest ONS evolved behaviors corresponded to average 
network complexity: 0.449 and task performance range: [0.65, 
0.7), where the fittest NS evolved behaviors corresponded to 
average network complexity: 0.430 and performance range:  
[0.60, 0.65).

Similar results were observed in the 6vs4, 5vs4, and 5vs3 
keep-away tasks. For the simplest task (4vs3 keep-away), aver-
age network complexity of the fittest ONS evolved behaviors 
were significantly higher than the fittest NS evolved behaviors, 
though task performance of ONS evolved behaviors was 
significantly higher. However, in the task performance range: 
[0.6, 0.65), ONS evolved behaviors yielded a significantly 
lower average network complexity of 0.408, versus 0.414 for 
NS evolved behaviors.

These results narrow the focus of the hypothesis about the 
benefits of behavior based search, via indicating that ONS yields 
further benefits in terms of evolving highly fit yet topologically 
simple controllers. In particular, these results support the notion 
that ONS, compared to NS, is the preferred evolutionary search 
method for discovering high-quality behaviors encoded by 
relatively simple controllers, devoid of unnecessary topological 
complexity and redundancy.
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TaBle 7 | Average normalized CPPN complexity (neurons and connections, over 20 runs) for the fittest behaviors evolved by each HyperNEAT variant for each keep-
away task.

Task performance Keep-away 4vs3

generations complexity

Os Ons ns Ogn gns Os Ons ns Ogn gns

0.45 – – – 1 5 – – – 0.404 0.439
0.50 – – 1 21 72 – – 0.380 0.436 0.726
0.55 1 1 6 – – 0.386 0.379 0.386 – –
0.60 4 5 34 – – 0.411 0.408 0.414 – –
0.65 25 21 – – – 0.446 0.424 – – –
0.70 88 53 – – – 0.476 0.450 – – –

Task performance Keep-away 5vs3

generations complexity

Os Ons ns Ogn gns Os Ons ns Ogn gns

0.45 – – – 1 11 – – – 0.414 0.466
0.50 – – 1 10 72 – – 0.397 0.433 0.740
0.55 2 1 3 48 – 0.403 0.399 0.402 0.455 –
0.60 4 4 32 – – 0.419 0.406 0.424 – –
0.65 9 14 – – – 0.421 0.409 – – –
0.70 48 27 – – – 0.424 0.414 – – –

Task performance Keep-away 5vs4

generations complexity

Os Ons ns Ogn gns Os Ons ns Ogn gns

0.45 – – – 1 5 – – – 0.425 0.484
0.50 – – 1 23 90 – – 0.399 0.440 0.799
0.55 1 1 2 – – 0.417 0.402 0.401 – –
0.60 7 5 37 – – 0.419 0.407 0.424 – –
0.65 34 18 – – – 0.433 0.418 – – –
0.70 – 78 – – – – 0.443 – – –

Task performance Keep-away 6vs4

generations complexity

Os Ons ns Ogn gns Os Ons ns Ogn gns

0.45 – – – 1 1 – – – 0.447 0.457
0.50 – – 1 35 75 – – 0.408 0.485 0.755
0.55 1 1 10 – – 0.405 0.401 0.413 – –
0.60 16 8 70 – – 0.423 0.421 0.435 – –
0.65 46 42 – – – 0.441 0.435 – – –
0.70 – – – – – – – – – –

Task performance Keep-away 6vs5

generations complexity

Os Ons ns Ogn gns Os Ons ns Ogn gns

0.45 – – – 1 1 – – – 0.457 0.464
0.50 – – 1 45 91 – – 0.402 0.498 0.814
0.55 1 1 17 – – 0.413 0.410 0.416 – –
0.60 17 10 83 – – 0.432 0.419 0.430 – –
0.65 86 61 – – – 0.480 0.449 – – –
0.70 – – – – – – – – – –

The task performance column indicates which 5 percentile group these fittest behaviors are in and the Generations column indicates the average number of generations taken to 
evolve the corresponding best performing behaviors and network complexity.
Bold values indicate the ONS variant has the lowest average CPPN complexity and highest average task performance and efficiency (for all tasks).
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The suitability of ONS for evolving high-quality (effective) 
behaviors encoded by simple controllers (networks) is further 
evidenced by the efficiency (generations) values in Table 7. For 

each task, the ONS variant takes fewer generations, compared 
to the other search variants, to evolve its fittest behaviors, where 
such behaviors are encoded by relatively simple controllers. For 
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example, in 6vs5 keep-away, NS takes an average of 83 genera-
tions to evolve networks with an average complexity of 0.430 in 
the task performance range: [0.6, 0.65), whereas ONS took 10 
generations to evolve networks with an average complexity 
of 0.419 in the same performance range. Similar results were 
observed for all variant comparisons in all keep-away tasks. 
Comparatively, NS and GNS required longer search periods to 
discover their fittest behaviors. This results from NS and GNS 
search mechanisms optimizing for the exploration of novel 
behaviors and genotypes, meaning an overall broader explora-
tion and discovery of diverse network topologies (Lehman and 
Stanley, 2011a; Gomes et al., 2013).

Table  7 further supports previous results demonstrating  
that behavioral diversity maintenance enables simple control-
ler and high-quality behavior evolution (Lehman and Stanley, 
2011a; Gomes et al., 2013). That is, OS, OGN, and GNS vari-
ants all yield significantly higher average network complexities  
for the fittest behaviors evolved in each task, where the GNS 
variant evolved the most complex networks overall.

Observing Table 7, for all tasks, when the average network 
complexity of OS and NS evolved behaviors is compared in 
the same performance category, both OS and NS yielded 
comparably complex networks, and in some tasks OS evolved 
networks were slightly less complex. Also, for all tasks, OS 
was significantly more efficient (generations taken) to evolve 
these comparable networks, and overall, OS evolved behaviors 
were significantly fitter. This supports the benefits of purely 
exploitative evolutionary search for boosting solution quality 
in the keep-away task. However, overall, the combination of 
novelty and objective-based search (ONS) yielded the most 
benefits, demonstrated by the efficient evolution of high-qual-
ity behaviors encoding significantly simple networks (Tables 6 
and 7). Also, ONS, OS, and NS explored comparable ranges 
of network topologies; however, the range and complexity 
of ONS topologies corresponded to significantly higher task 
performance behaviors with few exceptions (Section 5) for all 
keep-away tasks.

These results contribute to this study’s main hypothesis that 
the ONS variant is most appropriate for balancing exploration 
versus exploitation during evolutionary search to efficiently 
evolve effective (high-quality) behavioral solutions to complex 
tasks (Section 1). Furthermore, these results lend support to 
the notion that behavioral diversity maintenance methods such 
as NS (Lehman and Stanley, 2011a) are suitable for evolving 
high-quality behaviors in complex tasks encoded by relatively 
simple controllers. Though, these results indicate that the hybrid 
search approach adopted by ONS elicits certain benefits over 
NS. For example, a more efficient search process, less complex 
controllers, and evolved behaviors with significantly higher task 
performance in most tasks (with few exceptions, Section 5). The 
following Section 6.2 continues the results analysis, elucidating 
the exploration versus exploitation capacity of each search vari-
ant with behavior space visualizations.

6.2. Behavioral space analysis
To elucidate each HyperNEAT search variant’s capacity to 
explore behavior spaces defining each keep-away task and thus 

the efficiency and effectiveness of each variant’s behavioral 
evolution, we applied dimensionality reduction to the final 
generation of behaviors evolved by each variant to visualize the 
contribution of various behavioral components to the fittest 
behaviors types and the diversity of behavior types discovered.

Since the keep-away tasks are defined by high dimensional 
behavior spaces (Section 3.6), we used Self-Organizing Maps 
(SOMs) (Kohonen, 1990) to reduce final generation behavior 
spaces (for each variant) to 10 ×  10 maps visualizing behavior 
types.7 SOMs were selected as previous work (Gomes et al., 2013) 
indicated their suitability for mapping high dimensional behavior 
spaces into low dimensional visualizations preserving the salient 
topological relations between behavioral features.

For all keep-away tasks, the final generation behavior popula-
tion evolved by each variant was used to create compact two-
dimensional SOM representations of discrete behavior types 
(Figure  4).8 These SOMs were trained with behavior vectors 
characterizing keep-away behaviors, where such vectors were 
constituted by three components: average number of passes, 
dispersion of team members, and distance of the ball to the center 
of the field (Section 3.4). For added clarity in the SOM behavior 
type visualizations, we also included average keeper team ball 
control time (episode length in Figure  4) as a behavioral task 
performance indicator.

For succinctness of discussion, we only visualized behavior 
types for search variants in the most complex task, 6vs5 keep-
away (Figure 4). This task was selected as we want to evaluate 
the capacity of each search variant to discover effective behavior 
types in high-dimensional behavior spaces (as typified by 6vs5 
keep-away). Also, similar patterns of behavior type explora-
tion and behavioral diversity were observed for given variants 
applied in each task. Furthermore, we do not present or discuss 
behavior maps for behavior types evolved at the final generation 
of OGN and GNS variants, since these variants yielded signifi-
cantly lower average task performances, compared to ONS, NS, 
and OS, for all tasks (Section 5). For reference, Appendix C in 
Supplementary Material presents behavior type visualizations 
for all search variants applied in all tasks.

Figure 4 presents behavior type visualizations for 20 behav-
ior populations produced by each variant at the final generation 
in 6vs5 keep-away. Figure 4 (left) depicts 10 × 10 behavior types 
visualized as circles composed of four slices. Each slice corre-
sponds to a behavioral component: number of passes, dispersion 
of team members, distance of the ball to the field’s center, and 
episode length, where component slice size corresponds to its 
average value. Thus, varying combinations of behavioral com-
ponent values define varying behavior types, where behavior 
types are arranged on the map according to relative behavioral 
component values. For example, the right hand side of the OS 
behavior type map in Figure 4 (left) depicts behavior types with 
relatively high values for distance to field’s center, whereas the 
left hand side depicts behavior types with relatively low values 

7 A 10 x 10 map size was selected as this is the half the ANN sensory input layer 
size (Section 3.2.1).
8 All SOM visualizations for all variants and tasks are presented in Appendix C in 
Supplementary Material.
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for each component. Behavior types containing larger values  
for episode length are progressively presented toward the bot-
tom row.

To complement behavior type visualizations, Figure 4 (right) 
presents unified distance matrices (u-matrices) visualizing 
behavior type clusters at each variant’s final generation in 6vs5 
keep-away. Vector quantization (Gersho and Gray, 1992) was 
applied between SOM nodes (Figure 4, left) to gauge behavioral 
distances (normalized Euclidean distance) between behavior 
types.9

The u-matrix in Figure  4 (right) visualizes the behavioral 
distance between each node in the behavior type map. Darker 
colors denote closer behavioral distances and lighter colors 
denote larger differences between two behavior types. Darker 
areas are equated with clusters of similar behavior types and 
lighter areas are tantamount to cluster separators (Ultsch and 
Siemon, 2001). Any two u-matrix nodes can be compared to 
ascertain their behavioral distance, where a given coordinate in 
the u-matrix (Figure 4, right) corresponds to the same coordi-
nate in the behavior type map (Figure 4, left).

Observing the ONS behavior type map in Figure  4 (left), 
the fittest behavior types are characterized by the following 
components. First, a predisposition to maximizing keeper 
distance from the field’s center, with relatively few passes and 
little keeper-team dispersion (ONS behavior type map coordi-
nates: 9, 10). Second, a high number of passes with little team 
dispersion and distance to the field’s center (ONS behavior 
type map coordinates: 4, 10). Comparatively, the fittest OS 
evolved behavior type had a similarly large episode length (OS 
behavior type map coordinates: 10, 10), though overall the OS 
behavior type map indicates lower episode lengths (fitness) 
associated with each behavior type in the map (Figure 4, left). 
This difference between ONS and OS behavior type maps is 
supported by the significantly lower average task performance 
of OS (compared to ONS) evolved behaviors in 6vs5 keep-away 
(Section 5). Similar to a fittest ONS evolved behavior type (ONS 
behavior map coordinates: 9, 10), the fittest OS evolved behav-
ior type had a predisposition for keepers to maximize their 
distance from the field’s center while the team stayed relatively 
compact (little dispersion) and making relatively few passes. 
This behavioral bias toward keepers maximizing distance to 
the field’s center was found to be common to all the fittest OS 
and ONS evolved behavior types across all keep-away tasks 
(Appendix C in Supplementary Material).

Observing the NS behavior type map (Figure  4, left), it is 
notable that similar to the other fittest ONS evolved behavior 
type (ONS behavior type map coordinates: 4, 10), the fittest NS 
evolved behavior type maximized the number of passes, while 
keepers maintained relatively little dispersion and distance from 
the field’s center (NS behavior coordinates: 10, 10). Thus, the 
same prevalent behavioral component was present in the fittest 
NS and ONS evolved behavior types. However, as with compari-
sons between the ONS and OS behavior maps, the fitness of NS 

9 All SOM visualizations for all search variants applied in each task are presented in 
Appendix C in Supplementary Material.

evolved behavior types, overall, was observed to be lower than 
that of OS evolved behavior types (Figure 4, left).

A key difference between the fittest ONS, OS, and NS 
evolved behavior types was the multitude of comparably fitter 
ONS evolved behavior types, as evident in the ONS behavior 
map (Figure  4, left). That is, the fittest ONS behavior types 
comprised specific combinations of behavioral component 
values that resulted in high task performance, whereas OS and 
NS evolved behavior types, despite having biases to some of the 
same prevalent behavior components, failed to discover such 
particular weightings of the behavioral components and thus 
failed to achieve comparable fitness values. This is supported 
by the significantly lower average task performance of the fit-
test OS and NS evolved behaviors compared to the fittest ONS 
evolved behaviors (Section 5). The capacity of ONS to evolve 
multiple highly fit behavior types and OS and NS to evolve 
relatively few is elucidated by visualizing the diversity between 
behavior types in the behavior space at the final generation of  
each variant.

The following describes u-matrices as complementary beha-
vior space visualization tools to further explain differences 
between ONS, OS, and NS evolved behavior types. Consider 
the u-matrices corresponding to the OS, NS, and ONS behavior  
type maps (Figure 4, right). Each u-matrix illustrates a represen-
tation of how the final generation of behaviors evolved by each 
variant are topologically related to each other in the behavior 
space. This provides an indication of the diversity of evolved 
behavior types and thus the relative ease or difficulty for different 
search variants to discover highly fit behavior types. Comparing 
the OS, NS, and ONS u-matrices (Figure 4, right), it is notable 
that the ONS u-matrix depicts overall greater behavior distances 
(lighter shading), between clusters of highly fit behavioral types 
and relatively small behavioral distances (darker shading) within 
clusters of similar behavior types.

For example, consider a fittest ONS behavioral type (behav-
ior map and u-matrix coordinates: 4, 10). This behavior type 
is relatively close in the behavioral space to another highly fit 
behavior type (behavior map and u-matrix coordinates: 9, 
10), given comparable cell coloration in the u-matrix and thus 
negligible behavioral distance between these two behavior 
types. Furthermore, for both these behavior types, the adjacent 
(surrounding) u-matrix cells depicts minor differences in cell 
coloration (especially for cells on the left) indicating relatively 
close behavioral distances to these other behavior types. These 
behavior type clusters share some behavioral component biases. 
For example, the behavior type at coordinates: (9, 10), shares 
a bias toward maximizing keeper distance to the field’s center, 
with its neighboring behavior types, thus forming a cluster of 
similar behavior types. Similarly, the behavior type at behavior 
map coordinates: (4, 10) shares a bias to maximize the number 
of keeper passes, with its neighboring behavior types, thus form-
ing a second cluster of similar behavior types. A third highly fit 
behavior type cluster can be observed in the top right of the ONS 
behavior type map and u-matrix (Figure 4). That is, there is little 
coloration difference between u-matrix cell coordinates: (1, 4), 
its neighboring cells, and the behavior type clusters defined by  
cell coordinates: (4, 10), (9, 10), and their surrounding cells.
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Also, the overall cell coloration of the ONS u-matrix is 
rela tively light with few dark patches, indicating an overall 
broad spread in behavioral distances between the behavior 
types evolved at the final generation of the ONS variant. This 
equates to the ONS variant operating in a large but highly fit 
behavior space region, with little behavioral distance between 
the fittest clusters. Discovery of the absolute fittest behavior 
types was enabled by the ONS objective function exploiting 
fitness gradients between these highly fit behavior type clusters 
and the overall diversity of the behavior space covered by all 
final generation behavior types is indicative of ONS behavioral 
diversity maintenance.

Comparing NS and ONS u-matrices, the overall light color-
ing of the NS u-matrix (Figure 4, right), indicates slightly more 
pronounced behavior type diversity at the final generation 
of NS. However, a cluster of closely related behavior types is 
evidenced by a series of dark patches stretching from the bot-
tom left to the top right corner of the NS u-matrix (Figure 4, 
right). On both sides of this cluster (top left and bottom right 
hand corner, Figure 4) is a broad spread of relatively dissimilar 
behavior types, indicating a correspondingly broad behavior 
space exploration. This diversity of NS evolved behaviors is 
supported by related behavior space visualizations (Section 
6.3). A key difference between NS and ONS evolved behavior 
types is evident from observing the corresponding NS and ONS 
behavior type maps (Figure 4, left). Overall, fitness associated 
with NS evolved behavior types was relatively low, as observed 
by the spread of dissimilar behaviors observed in the top-left 
hand corner of the NS u-matrix (Figure 4, left). Comparatively 
low fitness values were not observed for most ONS behavior 
types, even though a comparable diversity in behavior types was 
observed (Figure 4, left). This is supported by the significantly 
lower average task performance yielded by NS evolved behav-
iors, compared to ONS evolved behaviors (results 5).

Thus, ONS evolved the most diverse behavior types, where 
such behavior types were defined by specific compositions of 
the behavioral components: number of passes, dispersion of team 
members, distance of the ball to the field’s center, and episode 
length as an indication of associated behavior fitness. This diver-
sity of behavior types was indicative of an expansive search of 
highly fit regions in the behavior space at the final generation of 
ONS, where multiple comparably highly fit behavior types were 
discovered in this behavior space region. This pattern of effective 
exploration (diversity of behavior types) balanced with exploita-
tion (high average task performance) was observed when ONS 
was applied in all other tasks (Appendix C in Supplementary 
Material).

The NS variant evolved similarly diverse behavior types; 
however, this diversity did not equate with comparably fit final 
generation behaviors. The significantly lower average task per-
formance of NS versus ONS evolved behaviors held true for all 
tasks tested (Section 5). This indicates that while the behavioral 
diversity maintenance mechanism of NS enabled an expansive 
behavior space search and discovery of diverse behavior types, 
the lack of an exploitative objective-based search mechanism 
was deleterious across all tested keep-away tasks. The following 
Section 6.3 provides further support of this results analysis with a 

discussion of genotype space visualizations that further elucidate 
the effectiveness and efficiency of each search variant applied 
across increasingly complex keep-away tasks.

6.3. evolutionary search Variant  
efficiency and effectiveness
To ascertain the effectiveness of each variant we visualized the 
spread of genotypes evolved at each variant’s final generation, 
where such visualizations present the portion of genotypes in 
different task performance regions (Figure  3). To ascertain 
each variant’s efficiency, we measured the average number of 
generations taken to evolve behaviors surpassing a task perfor-
mance threshold (Section 5.2) for each task (Table 5). This sec-
tion only discusses the ONS, OS, and NS variants as the other 
variants were found to consistently evolve significantly less 
effective behaviors (Figure 2) with lower efficiency (Table 5). 
Search efficacy is discussed with respect to exploration versus 
exploitation of the genotype space and hence the capacity to 
efficiently evolve high-quality behaviors.

6.3.1. ONS Variant
Consider that, for all keep-away tasks (with few exceptions, 
Section 5), ONS evolved behaviors yielded significantly higher 
average task performances compared to the fittest behaviors 
evolved by other variants (Figure  2). Higher average task 
performance of the fittest ONS evolved behaviors is supported 
by the capacity of ONS to effectively explore the behavior space 
during evolutionary search. This is evidenced by large portions 
of the fittest ONS evolved genotype populations occupying the 
highest 40% task performance range in behavior space regions 
for each task (Figure 3, left). Also, compared to other variants, 
relatively few genotypes of the fittest ONS evolved populations 
were in the lowest 60% of the keep-away task performance 
range (Figure 3, left).

However, average ONS efficiency was observed to be 
significantly worse or comparable for most keep-away tasks 
(Table 5). This low average efficiency of ONS search was indica-
tive of the expansive behavior space exploration and number of 
generations needed for such broad behavior space exploration. 
The low efficiency of ONS search was, however, offset by the 
variants capacity to discover behaviors yielding significantly 
higher task performances for all tasks (Section 5). Consider 
the progression of average task performance presented in 
Figure  5. Figure  5 indicates that ONS consistently achieved 
the highest task performance, though average maximum task 
performance was attained at later generations compared to 
other variants. Hence, the trade-off for higher quality of ONS 
evolved behaviors was longer evolution times and the number 
of genotype evaluations taken significantly increased with task 
complexity (Section 5.2).

The success of the ONS variant was thus consequent of benefi-
cial interactions between its behavioral diversity maintenance and 
objective-based search mechanisms. That is, behavioral diversity 
maintenance first covered expansive regions of the solution 
space encapsulating a diverse range of behaviors. Within such 
diverse behavior regions objective-based search acted as a fine 
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FigUre 3 | Heat-maps showing portions of (final generation) genotypes evolved by HyperNEAT variants with (left column) and without (right column) policy transfer. 
OS, objective-based; NS, novelty search; ONS, objective-novelty hybrid; GNS, genotypic novelty search; OGN, objective-GNS hybrid. Darker shading indicates a 
higher portion of genotypes in a given 0.2 interval of normalized task performance [0.0, 1.0].
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FigUre 4 | Left: Self-organizing map (SOM) visualizing behavior space exploration at the final generation of OS, NS, and ONS search variant in 6vs5 keep-away. 
Each circle represents a behavior type (four colored slices). Each slice represents one component of the behavior characterization vector (Section 3.4.1), where slice 
size equates to the given component’s value. Right: U-matrix visualizing the clustering of behavior types (nodes in the SOM, left) in the behavior space at the final 
generation of OS, NS, and ONS. The darker the color between two adjacent nodes the closer the distance between the two behavior types in the behavior space. 
Note the differing u-matrix Y-axis values indicating normalized behavioral distances.
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tuning mechanism, following fitness gradients to propagate the 
evolution of increasingly fit solutions resulting in the discovery 
of the highest task performance behaviors overall. This notion is 
supported by NS and OS variant results, where neither of these 
methods had the benefit of complementing objective-based 

search or behavioral diversity maintenance mechanisms (respec-
tively), and as a result significantly poorer quality solutions were 
evolved for all tasks.

This demonstrated capacity for the ONS variant to effectively 
balance exploration versus exploitation during evolutionary 
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FigUre 5 | Average maximum task performance progression (given policy transfer), over 20 runs in each task, for each HyperNEAT. OS, objective-based search; 
NS, novelty search; ONS, objective-novelty search; GNS, genotypic novelty search; OGN, objective-genotypic novelty search. Note: ONS variant consistently 
evolves behaviors with the highest maximum task performance (observable at each final generation), and progression is over 70 generations for consistency with 
non-policy transfer experiments.
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search thus boosting evolved behavioral quality is supported by 
related work that similarly highlighted the benefits of evolution-
ary search methods that hybridize objective-based search and 
behavioral diversity maintenance (Cuccu and Gomez, 2011; 
Gomes et al., 2013, 2015; Shorten and Nitschke, 2015; Didi and 
Nitschke, 2016a,b).

6.3.2. OS and NS Variants
For all keep-away tasks (with the exception of 5vs4 keep-away, 
where there was no significant difference between the fittest 
ONS, OS and NS evolved behaviors), the fittest NS evolved 
behaviors performed significantly worse than the fittest ONS 
and OS evolved behaviors (Section 5). Consider Figure 5, which 
illustrates the task performance progression of NS evolved 
behaviors, for all tasks, as being consistently third highest 
after ONS and OS evolved behaviors. Thus, while NS evolved 
behaviors significantly out-performed GNS and OGN for all 
tasks, NS evolved keep-away behaviors at best yielded average 
task performances comparable to OS evolved behaviors and  

were significantly poorer quality compared to ONS evolved 
behaviors (Figure 2).

Also, for all tasks, the fittest NS and ONS evolved populations 
yielded comparable exploration of the solution space (Figure 3). 
However, compared to ONS, relatively small portions of the fit-
test OS evolved genotypes were in the highest task performance 
region of the solution space range: [0.6, 1.0] (Figure 3). Though 
for all tasks comparable portions of OS and NS evolved geno-
types were calculated as being in this task performance region 
of the solution space: [0.6, 1.0] (Figure  3). This comparable 
exploration capacity of the OS and NS variants in across all tasks 
is also evidenced by average task performance progression over 
the evolutionary process of each variant (Figure 5). Observing 
Figure 5, it is notable that for all tasks NS and OS evolved behav-
iors attain their respective average maximum task performances 
at approximately the same number of generations. This indicates 
that the NS and OS search processes were on average equally 
effective in that both discovered local optima in the behavior 
space after comparable durations of exploration.
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Furthermore, these results indicate that even though the 
NS variant maintains the capacity for expansive exploration of 
the solution space for all tasks (Figure  3) and evolves diverse 
behavior types at the final generation of the evolutionary process 
(Section 6.2), the objective-based search of the OS variant was 
demonstrated as significantly more effective at evolving high-
quality behaviors for the keep-away tasks.

The significantly higher task performance of ONS and OS 
evolved behaviors further supports the notion that the keep-
away task is amenable to objective-based search but only to a 
certain degree of task complexity. Section 6.2 highlighted that 
specific combinations of behavioral component values are 
required to achieve high-quality behaviors, where the fitness 
function used by the OS variant (Section 3.3) was suitable for 
efficiently evolving such behaviors (Table  5). The NS variant 
was also found to be efficient, for all tasks, at evolving its fit-
test behaviors (Table 5), and had the capacity to explore broad 
regions of the behavior space (Figure 3). Though, in keep-away, 
the search for novel behaviors by the NS variant (Section 3.4) 
worked ineffectively, in that novel behaviors discovered were 
on average significantly less effective than those evolved by the 
OS and ONS variants. This indicates that despite the NS variant 
effectively exploring broad regions of the search space, the lack 
of objective-based search as an exploitative mechanism for fol-
lowing fitness gradients to increasingly fit behaviors, was found 
to significantly limit the performance of the NS variant.

This result is supported by related work demonstrating 
that NS is less effective in complex tasks defined by high-
dimensional solution spaces (Cuccu and Gomez, 2011; 
Gomes et  al., 2013), and that high-quality solutions attained 
via including objective-based search to allow exploitation of 
broadly explored behavior space regions.

6.4. Discussion summary
This study’s core results indicated that the ONS variant of 
HyperNEAT (hybridizing behavioral diversity maintenance 
and objective-based search) consistently evolved behaviors with 
significantly higher task performance, compared to other search 
variants. To elucidate the mechanisms responsible for the effi-
ciency and effectiveness of ONS evolved behaviors, we presented 
an analysis of the fittest behavior populations evolved by each 
variant.

Section 6.1 examined the impact of the objective-based 
versus non-objective and hybrid evolutionary search variants 
on the network complexity of the CPPNs corresponding to the 
fittest evolved behaviors. This results analysis indicated that 
ONS yielded benefits over the other search variants given that 
it enabled the evolution of significantly fitter yet topologically 
simple controllers. Specifically, the capacity of ONS to suitably 
balance exploration versus exploitation of the behavior space 
resulted in the evolution of high-quality behaviors encoded by 
relatively simple controllers, free of unnecessary topological 
complexity and redundancy.

Section 6.2 applied dimensionality reduction to final genera-
tion evolved behaviors to visualize the behavior types evolved 
by each variant. SOMs were used to represent the salient 
behavioral features comprising the fittest behavior types and 

behavior maps were used to visualize the average behavioral 
distance between such features. An analysis of these behavior 
visualizations indicated that the fittest ONS evolved behavior 
types comprised specific combinations of behavioral features 
that resulted in high-quality behaviors, whereas other variants 
failed to evolve such behavioral feature combinations and thus 
evolve behaviors of comparable quality. This analysis indicated 
that the ONS variant operated in large, highly fit behavior space 
regions. Discovery of the fittest behavior types was enabled by 
the ONS objective function exploiting fitness gradients between 
highly fit behavior types in a diverse behavior space, where the 
exploration of such behaviors was enabled by ONS behavioral 
diversity maintenance.

Section 6.3 presented genotype space visualizations indicat-
ing portions of genotypes evolved in various task performance 
regions. These visualizations further elucidated the capacity of 
the ONS variant to suitably balance exploration versus exploita-
tion during evolutionary search. This genotype space analysis 
indicated that the fittest genotype populations (occupying the 
highest 40% task performance range in the behavior space) 
were consistently evolved by ONS, whereas most of the fittest 
populations evolved by other search variants were consistently 
in the lowest 60% of the task performance range. This analysis 
thus further supported ONS as effectively exploring the behavior 
space to exploit (discover) high-quality behaviors during evolu-
tionary search.

7. cOnclUsiOn

This study’s research goal was twofold. First, to elucidate that 
a hybrid evolutionary search approach combining objective 
(fitness function) and non-objective-based (behavioral diversity 
maintenance) search is most suitable for efficiently evolving 
effective behavioral solutions to increasingly complex collective 
behavior tasks. The collective behavior case study in this research 
was RoboCup keep-away soccer. Second, to support a hypothesis 
that policy (behavior) transfer coupled with evolutionary search 
is a consistently suitable method for boosting the effectiveness 
and efficiency of evolved solution quality across increasingly 
complex tasks.

The first insight from experimental results was that evo-
lutionary search driven by hybridized behavioral diversity 
maintenance and objective-based search was best suited for effi-
ciently evolving effective behaviors across increasingly complex 
keep-away tasks. The second insight was that policy transfer 
significantly increased the average quality (task performance) 
and the efficiency (genotype evaluations taken) with which 
such behaviors were evolved. However, policy transfer had the 
most benefits for keep-away behaviors evolved by the hybrid 
evolutionary search. That is, all hybrid evolved behaviors were 
significantly more effective (and efficiently evolved) compared 
to those evolved by other evolutionary search variants. This 
result was supported by related work that similarly demon-
strated the benefits of combining behavioral diversity mainte-
nance and objective-based evolutionary search (Gomes et  al., 
2013; Shorten and Nitschke, 2015; Didi and Nitschke, 2016b) 
to mitigate the bootstrap problem (Gomez and Miikkulainen, 
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1997) for complex tasks and enable the evolution of high-quality 
solutions. The third insight was that the high-quality behaviors 
evolved by the hybrid evolutionary search method encoded 
relatively simple neural controllers. This was a result of this 
hybrid method’s capacity to appropriately balance explora-
tion versus exploitation during evolutionary search, such that 
evolved controllers did not contain unnecessary complexity that 
hindered high-task performance.

Thus, this study contributes to increasing empirical evidence 
indicating the effectiveness of hybrid objective-behavioral 
diversity search methods in complex tasks defined by very large 
behavior spaces (Mouret and Doncieux, 2009b, 2012; Lehman 
and Stanley, 2011b; Gomes et al., 2012, 2015; Inden et al., 2013; 
Shorten and Nitschke, 2015). Ongoing research is investigating 
the impact and interaction of various behavior representations, 
behavior evolution and policy transfers methods, on facilitating 
the effective transfer of evolving behaviors across various tasks. 

Hence, future research aims to further elucidate the necessary 
methodological features for facilitating behavior evolution 
across increasingly complex and dissimilar tasks. The end goal is 
to design new methods capable of evolving controllers that elicit 
general problem solving behavior.
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