
November 2017 | Volume 4 | Article 621

Original research
published: 29 November 2017
doi: 10.3389/frobt.2017.00062

Frontiers in Robotics and AI | www.frontiersin.org

Edited by:
Kenneth O. Stanley,

University of Central Florida,
United States

Reviewed by:
Randy Olson,

Michigan State University,
United States

Stephane Doncieux,
Université Pierre et Marie

Curie, France

*Correspondence:
Geoff Nitschke

gnitschke@cs.uct.ac.za

Specialty section:
This article was submitted to

Evolutionary Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 25 June 2017
Accepted: 06 November 2017
Published: 29 November 2017

Citation:
Nitschke G and Didi S (2017)

Evolutionary Policy Transfer and
Search Methods for Boosting

Behavior Quality: RoboCup
Keep-Away Case Study.

Front. Robot. AI 4:62.
doi: 10.3389/frobt.2017.00062

evolutionary Policy Transfer
and search Methods for Boosting
Behavior Quality: robocup
Keep-away case study
Geoff Nitschke* and Sabre Didi

Department of Computer Science, University of Cape Town, Cape Town, South Africa

This study evaluates various evolutionary search methods to direct neural controller
evolution in company with policy (behavior) transfer across increasingly complex
collective robotic (RoboCup keep-away) tasks. Robot behaviors are first evolved in a
source task and then transferred for further evolution to more complex target tasks.
Evolutionary search methods tested include objective-based search (fitness function),
behavioral and genotypic diversity maintenance, and hybrids of such diversity main-
tenance and objective-based search. Evolved behavior quality is evaluated according
to effectiveness and efficiency. Effectiveness is the average task performance of
transferred and evolved behaviors, where task performance is the average time the
ball is controlled by a keeper team. Efficiency is the average number of generations
taken for the fittest evolved behaviors to reach a minimum task performance threshold
given policy transfer. Results indicate that policy transfer coupled with hybridized evo-
lution (behavioral diversity maintenance and objective-based search) addresses the
bootstrapping problem for increasingly complex keep-away tasks. That is, this hybrid
method (coupled with policy transfer) evolves behaviors that could not otherwise
be evolved. Also, this hybrid evolutionary search was demonstrated as consistently
evolving topologically simple neural controllers that elicited high-quality behaviors.

Keywords: evolutionary policy transfer, behavioral diversity maintenance, hybrid objective-novelty search,
collective behavior evolution, robocup keep-away soccer

1. inTrODUcTiOn

Recent work in Evolutionary Robotics (ER) (Doncieux et al., 2015) has provided increasing
empirical evidence that maintaining diversity in phenotypes (robot behaviors) improves the
quality (task performance) of evolved behaviors (Mouret and Doncieux, 2012; Cully et al., 2015;
Cully and Mouret, 2016; Gomes et al., 2016). Specifically, replacing objective search with the
search for behavioral diversity in controller evolution (Moriguchi and Honiden, 2010; Mouret
and Doncieux, 2012; Lehman et al., 2013; Gomes et al., 2015) has been demonstrated to boost
the quality of evolved behaviors across a range of simulated (Lehman and Stanley, 2011a; Mouret
and Doncieux, 2012; Gomes et al., 2016) and physical (Cully et al., 2015; Cully and Mouret, 2016)
ER tasks.

In controller design in the field of ER, there has been an increasing research and empirical data
indicating that non-objective evolutionary search, such as novelty search (Lehman and Stanley,
2011a) and other behavioral diversity maintenance approaches (Mouret and Doncieux, 2012),

http://www.frontiersin.org/Robotics_and_AI
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2017.00062&domain=pdf&date_stamp=2017-11-29
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2017.00062
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:gnitschke@cs.uct.ac.za
https://doi.org/10.3389/frobt.2017.00062
http://www.frontiersin.org/Journal/10.3389/frobt.2017.00062/full
http://www.frontiersin.org/Journal/10.3389/frobt.2017.00062/full
http://www.frontiersin.org/Journal/10.3389/frobt.2017.00062/full
http://www.frontiersin.org/Journal/10.3389/frobt.2017.00062/full
http://loop.frontiersin.org/people/153239
http://loop.frontiersin.org/people/441866

2

Nitschke and Didi Evolutionary Policy Transfer and Keep-Away

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 62

out-perform objective-based search in various evolutionary
robotic control tasks defined by complex, high dimensional,
and deceptive fitness landscapes (Cully et al., 2015; Cully and
Mouret, 2016; Gomes et al., 2016). However, current empirical
data indicate that for controller evolution to solve complex
collective behavior tasks, then neither objective nor non-
objective-based search performs well (evolves high-quality
behaviors). Rather, recent research results indicate that hybrid-
izing these two search approaches facilitates the evolution of
the high-quality behaviors (Gomes and Christensen, 2013b;
Gomes et al., 2013, 2015).

Furthermore, related work intersecting the fields of evolu-
tionary controller design and policy (behavior) transfer1 indicate
that coupling evolutionary search with the transfer of behaviors
between tasks of increasing complexity is an effective means
to boost evolved behavior quality for a broad range of tasks
(Whiteson and Stone, 2006; Taylor et al., 2010; Verbancsics and
Stanley, 2010; Didi and Nitschke, 2016a). Policy transfer is a
method that aims to improve learning by leveraging knowledge
from learning in related but simpler tasks (Pan and Yang, 2010).
Policy transfer reuses learned information across tasks, where
information is shared between source and target tasks, and used
as a starting point for learning new behaviors in target tasks.
Transferring knowledge learned on a source task accelerates
learning and increases solution quality in target tasks by exploit-
ing relevant prior knowledge.

While the benefits of non-objective (behavioral and geno-
typic diversity maintenance) and hybrid (Gomes et al., 2015)
evolutionary search (Mouret and Doncieux, 2012) and policy
transfer (Taylor and Stone, 2009) methods have been separately
demonstrated for increasing behavioral quality in various tasks,
the impact (on behavior quality) of using non-objective and
hybrid evolutionary search in the context of policy transfer
remains unknown. Given previous work elucidating the efficacy
of hybrid evolutionary search (Gomes and Christensen, 2013b;
Gomes et al., 2013, 2015) and policy transfer (Taylor et al., 2006;
Verbancsics and Stanley, 2010; Didi and Nitschke, 2016b) in col-
lective behavior tasks the following hypothesis forms the research
focus of this study.

Hybridized novelty and objective-based evolutionary search
used in company with policy transfer across increasingly complex
collective behavior tasks, results in significantly higher behavior
quality compared to other evolutionary search methods.

In this study, the evolutionary search method is Hyper-Neuro-
Evolution for Augmenting Topologies (HyperNEAT) (Stanley et al.,
2009), the task domain is RoboCup keep-away, and five evolution-
ary search variants are integrated into HyperNEAT to direct its
behavior evolution process. These variants are a fitness function
(objective-based search), behavioral diversity maintenance (nov-
elty search), genotypic diversity maintenance (Section 3), and both
genotypic and behavioral diversity maintenance hybridized with
objective-based search. RoboCup keep-away was selected as it
is a well-established multiagent (robot) experimental platform
(Taylor et al., 2010).

1 Also referred to as transfer learning in reinforcement learning research (Taylor
and Stone, 2009).

This study thus evaluates various evolutionary search
methods coupled with policy transfer as a means to increase
the quality of evolved collective (keep-away) behaviors. A key
contribution of this research is a comprehensive empirical
study demonstrating that coupling policy transfer with hybrid
evolutionary search (combining novelty- and objective-based
search) is the most effective method for boosting evolved solu-
tion quality across increasingly complex keep-away tasks.

Results indicate that this hybrid evolutionary search coupled
with policy transfer effectively addresses the bootstrapping
problem (Mouret and Doncieux, 2009a) for tested tasks, in that
evolved behavior quality is significantly higher compared to
other methods (without policy transfer and not using hybrid
evolutionary search). Behavior quality is measured by evolved
behavior effectiveness and efficiency, where effectiveness is the
increase in average task performance given policy transfer
and task performance is the average time for which the ball is
under keeper-team control. Efficiency is the average number of
generations taken by evolving transferred behaviors to reach
a minimum task performance threshold given policy transfer.
Results analysis indicates this to be a product of the interaction
between the search space exploration capacity of novelty search
and the search space exploitation capacity of objective-based
search. As a further result of the hybrid method’s capacity to
appropriately balance exploration versus exploitation during
evolutionary search, evolved controllers were topologically sim-
ple and did not contain unnecessary complexity that hindered
high-behavioral quality.

Furthermore, results indicate that as task complexity
increases novelty search performs increasingly poorly com-
pared to other evolutionary search methods. This suggests that
novelty search may not be an appropriate method for behavior
evolution in complex collective behavior tasks such as RoboCup
keep-away.

2. relaTeD WOrK

In line with this study’s research focus, this section overviews
relevant literature in behavioral and genotypic diversity main-
tenance as a means to direct evolutionary search as well as
evolutionary policy transfer, with a focus on collective behavior
evolution.

2.1. Behavioral and genotypic Diversity
Maintenance
Recent work in Evolutionary Robotics (ER) (Doncieux et al.,
2015) has provided increasing empirical evidence that main-
taining diversity in genotypes (robot controller encodings)
and phenotypes (robot behaviors) improves the quality (task
performance) of evolved behaviors in a range of tasks (Mouret
and Doncieux, 2012; Cully et al., 2015; Cully and Mouret, 2016;
Gomes et al., 2016).

Encouraging behavioral diversity has received significant
research attention in ER studies that using evolutionary control-
ler design. Behavioral diversity maintenance has been success-
fully applied to direct neuroevolution processes, discover novel

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

3

Nitschke and Didi Evolutionary Policy Transfer and Keep-Away

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 62

solutions, and increase solution performance to out-perform
fitness function-based controller evolution approaches in a
wide range of ER tasks (Mouret and Doncieux, 2012). Replacing
objective-based search (the evolutionary algorithm’s fitness func-
tion) with the search for behavioral diversity during the controller
evolution process (Moriguchi and Honiden, 2010; Mouret and
Doncieux, 2012; Lehman et al., 2013; Gomes et al., 2015) has been
demonstrated to boost the quality of evolved behaviors across
a range of simulated (Lehman and Stanley, 2011a; Mouret and
Doncieux, 2012; Gomes et al., 2016) and physical (Cully et al.,
2015; Cully and Mouret, 2016) robotic tasks.

Novelty search (NS) (Lehman and Stanley, 2011a) is special
case of behavioral diversity maintenance (Mouret and Doncieux,
2009a,b) and has become a popular method for directing evolu-
tionary search and boosting solution (evolved behavior) quality
in a range of applications (Lehman and Stanley, 2010a; Gomes
et al., 2013; Hodjat et al., 2016). Whereas behavioral diversity
maintenance selects for behavioral diversity with respect to the
current population (of evolved) behaviors, NS selects for the
most diverse (novel) behaviors with respect to an archive of
current novel behaviors (Mouret and Doncieux, 2012; Doncieux
and Mouret, 2014).

That is, NS is based on the notion of behavioral diversity
maintenance where a search for novel phenotypes (behaviors)
replaces the fitness function traditionally used to direct evo-
lutionary search (Eiben and Smith, 2003). Thus, a genotype is
more likely to be selected for reproduction if its encoded behav-
ior is sufficiently different from all other behaviors produced
thus far in an evolutionary run. Previous work has indicated
that controllers evolved with NS function in a range of tasks of
varying complexity (Velez and Clune, 2014) and such controllers
consistently out-performed controllers evolved with objective-
based search in a range of ER tasks (Mouret and Doncieux,
2012; Gomes et al., 2015, 2016). However, related research
suggests that for complex tasks such as collective behavior tasks
associated with swarm robotics (Duarte et al., 2016) (defined by
high dimensional, rugged, discontinuous, and deceptive fitness
landscapes (Eiben and Smith, 2003)), that evolutionary search
hybridizing objectives (fitness functions) and NS tend to evolve
effective high-quality solutions (behaviors) overall (Gomes and
Christensen, 2013b; Gomes et al., 2013, 2015). For a compre-
hensive survey of behavioral diversity maintenance methods
used in various ER studies, the reader is referred to the review
of Doncieux and Mouret (2014).

Similarly, previous work has demonstrated the benefits of
maintaining genotypic diversity as a means to boost the qual-
ity of evolved behaviors for various ER tasks (Floreano et al.,
2008; Doncieux et al., 2011, 2015; Mouret and Doncieux, 2012).
Genotype diversity maintenance is also a well-explored topic in
more general evolutionary computation research (Brameier and
Banzhaf, 2002; Ekárt and Németh, 2002; Crepinsek et al., 2013;
Lehman et al., 2013; Mueller-Bady et al., 2016). For example,
popular genotypic diversity maintenance methods include nich-
ing techniques such as fitness sharing and crowding (Sareni and
Krahenbuhl, 2013), multi-objective optimization (Deb, 2001a),
and multi-population models (Gomez and Miikkulainen, 1997).
Such techniques are effective at maintaining genotypic diversity

throughout an evolutionary process and at boosting solution
quality on a broad range of multimodal, noisy, high-dimensional
benchmark problems (Salah et al., 2016).

However, the impact of using genotypic diversity main-
tenance as a means to direct the evolutionary search process,
i.e., selecting for novel genotypes instead of novel phenotypes,
as is done for novelty search (Lehman and Stanley, 2011a), has
received relatively little research attention (Didi and Nitschke,
2016a,b). It is important to note that dissimilar to previous ER
studies where genotypic diversity maintenance has been used as
a mechanism to encourage exploration of the search space by a
fitness function (Floreano et al., 2008; Doncieux et al., 2011), this
study employs a genotypic novelty search method (Section 3.5).
That is, genotypic diversity maintenance drives the evolutionary
search process meaning that novel genotypes are selected for,
instead of novel behaviors (Lehman and Stanley, 2011a). To
date, the impact of controller evolution in ER systems directed
by genotypic novelty has not been studied and the genotypic
diversity maintenance approach described in Section 3.5 thus
constitutes one of this study’s contributions.

For an overview of genotypic diversity maintenance methods
derived in evolutionary computation research (Eiben and Smith,
2003) and applied to ER studies, with insights from comparisons
to behavioral diversity methods, the reader is referred to the
review of Mouret and Doncieux (2012).

2.2. evolutionary Policy Transfer
Policy (behavior) transfer, or transfer learning, is a method to
speed-up and improve learning by leveraging knowledge from
learning in related but simpler tasks. That is, learned informa-
tion is reused and shared between a source and target tasks,
where target tasks are used as a starting point for learning new
behaviors (Pan and Yang, 2010). Policy transfer has been widely
studied in the context of Reinforcement Learning (RL) methods
(Sutton and Barto, 1998), where various studies have consist-
ently demonstrated that transferring knowledge learned on a
source task accelerates learning and increases solution quality
in target tasks by exploiting relevant prior knowledge (Taylor
and Stone, 2009).

Policy transfer used in company with various RL methods has
been applied to boost solution quality in various single-agent
tasks including pole-balancing (Ammar et al., 2012), game-
playing (Ramon et al., 2007), robot navigation, as well as multia-
gent tasks including predator-prey (Boutsioukis et al., 2012).
For such single and multiagent tasks, policy transfer is typically
done within the same task domain for varying task complexity
(Torrey and Shavlik, 2009) and less frequently between differ-
ent task domains (Bou-Ammar et al., 2015). Recently, there has
been work investigating the efficacy of using policy transfer in
company with Evolutionary Algorithms (EAs) (Eiben and Smith,
2003) to boost evolved solution quality of evolved genotypes
with various representations. For example, Doncieux (2014)
used Neuro-Evolution (NE) (Floreano et al., 2008) to search
for effective Artificial Neural Network (ANN) (Haykin, 1995)
controllers in a simulated robot ball collecting task. This study
investigated several methods for extracting behavioral features
shared between varyingly complex versions of the task, where

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

4

Nitschke and Didi Evolutionary Policy Transfer and Keep-Away

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 62

extracted features were used as stepping stones to shape rewards
in the evolution of robot controllers transferred to more complex
versions of the ball collecting task.

Moshaiov and Tal (2014) used Multi-Objective Evolutionary
Algorithms (Deb, 2001b) to devise a method termed Family
Bootstrapping to evolve groups of complementary ANN con-
trollers for robot navigation tasks. These controllers were then
used as an evolutionary starting point for controller evolution
in navigation tasks with different objectives, where more effec-
tive navigation behaviors were evolved as a result. However,
using NE to facilitate collective behavior transfer has received
relatively little attention, with notable exceptions that include
the following.

Verbancsics and Stanley (2010) used a variant of Hyper-
Neuro-Evolution for Augmenting Topologies (HyperNEAT)
(Stanley et al., 2009) called HyperNEAT Bird’s Eye View (BEV)
that encoded the geometric relationships of task objects to facili-
tate the transfer of evolved behaviors. The authors demonstrated
collective (keeper agent team) behavior transfer in a keep-away
soccer (Stone et al., 2006a) task, elucidating that behaviors
evolved in source tasks did not need to be adapted before being
transferred to target tasks with varying agent numbers and field
sizes. Furthermore, keeper-team behaviors evolved and trans-
ferred to increasingly complex keep-away tasks were found to
be comparable in average task performance to keeper-team poli-
cies derived with RL methods and policy transfer (Stone et al.,
2006b; Whiteson and Stone, 2006).

Verbancsics and Stanley (2010) also used HyperNEAT to
demonstrate successful transfer of collective behaviors between
Knight’s Joust, which is a multiagent predator-prey task variant
(Taylor et al., 2010), and keep-away soccer tasks. The efficacy of
this policy transfer method was supported by improved task per-
formance on target tasks given further behavior evolution. This
method was supported by prior work (Bahceci and Miikkulainen,
2008) that evolved behaviors of computer board-game playing
agents, where indirectly encoded representations of evolved
behaviors facilitated effective agent behavior transfer between
games of increasing complexity (board size).

In related research, Taylor et al. (2006) used the Neuro-
Evolution for Augmenting Topologies (NEAT) method (Stanley
and Miikkulainen, 2002) to further evolve a population of ANN
controllers already evolved for a source keep-away soccer task.
The authors demonstrated that biasing and further evolving a
fittest population of controllers for more complex versions of
keep-away significantly decreased evolution time and achieved a
solution quality that could not have been achieved had keep-away
behaviors been evolved from scratch.

Subsequent work by Taylor et al. (2010) addressed the chal-
lenge of ensuring that a behavioral solution, derived in a source
task could be meaningfully transferred to be a workable solution
in a dissimilar and more complex target task. Hence, a mapping
function is required so that learned behaviors are transferable
between tasks with different states and state-action variables.
Taylor et al. (2010) derived the inter-task mappings for policy
search method to transfer populations of control policies (ANN
controllers) between the keep-away soccer, knight’s joust, and
server job scheduling (Whiteson and Stone, 2006) tasks. This

method was successfully applied with manually coded inter-task
mapping functions as well as mapping functions that were only
partially available or learned before behavior transfer. Results
indicated that learning time in target tasks was significantly
reduced and transferred behaviors out-performed those that did
not use policy transfer, that is, behaviors learned from scratch.

A common feature of these studies was the use of fitness
functions (Eiben and Smith, 2003), or objective-based search
to direct behavior evolution. That is, previous work has only
demonstrated the efficacy of evolutionary policy transfer given
objective-based search to direct controller evolution. While
such studies elucidate the benefits of objective-based evolution-
ary search coupled with policy transfer for single-agent and
relatively simple multiagent tasks, the impact of other (non-
objective) evolutionary search methods such as phenotypic and
genotypic diversity maintenance (Mouret and Doncieux, 2012)
used in company with policy transfer remains unknown. This
is especially the case for collective robotic systems that must
accomplish complex collective behavior tasks.

That is, previous work has only tested single-agent tasks such
as robot navigation (Moshaiov and Tal, 2014) and object collec-
tion (Doncieux, 2014) and simple multiagent tasks using few
agents (Taylor et al., 2006; Verbancsics and Stanley, 2010), where
non-objective evolutionary search methods were not considered.
The following section thus overviews recent research in non-
objective search (genotypic and phenotypic diversity mainte-
nance) methods in the context of evolutionary controller design.

3. MeThODs

This study’s research objective was to investigate the impact of
objective (Section 3.3) versus non-objective (Sections 3.4–3.5)
based search to direct the NE process coupled with collective
behavior transfer across increasingly complex keep-away tasks.
Specifically, the evolutionary search process of HyperNEAT
is driven by either objective-based search (a fitness function)
(Eiben and Smith, 2003) or by non-objective-based search. The
non-objective-based approaches investigated in this study are
the search for behavioral (Lehman and Stanley, 2011a; Mouret
and Doncieux, 2012) and genotypic (Brameier and Banzhaf, 2002;
Ekárt and Németh, 2002; Lehman et al., 2013; Mueller-Bady
et al., 2016; Salah et al., 2016) novelty, and hybrids of behavioral
novelty search, genotypic novelty search, and objective-based
search (Gomes et al., 2015). This study implements five variants
of HyperNEAT, where each variant differs in terms of how neuro-
evolutionary search is directed. Table 1 presents the five variants
of each method. These variants were selected to elucidate how
policy transfer can be integrated into HyperNEAT to speed-up
training and improve task performance in increasingly complex
keep-away soccer tasks (Section 3.6).

The following sections briefly outline the heuristic taker
controller, and the application of HyperNEAT to keeper-team
controller evolution.

3.1. Taker-Team heuristic controller
Each taker agent executes the same fixed heuristic behavior for
the duration of each simulation task trial. A taker agent is able to

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

TaBle 1 | HyperNEAT variants for evolving keep-away behavior in the source
task.

Variant name Variant description

OS Objective-based HyperNEAT (Section 3.3)
NS Novelty search (Section 3.4.1)
ONS Hybrid novelty-objective based search (Section 3.4.2)
GNS Genotypic novelty search (Section 3.5.1)
OGN Hybrid GNS-objective based search (Section 3.5.2)

source task Keep-away description
3vs2 Three keepers and two takers

Target task Keep-away description
4vs3 Four keepers and three takers
5vs3 Five keepers and three takers
5vs4 Five keepers and four takers
6vs4 Six keepers and four takers
6vs5 Six keepers and five takers

Evolved behaviors are then transferred to incrementally complex target tasks.

algOriThM 1 | Taker Team Heuristic Controller.

Initialize agent positions, assign IDs
Read taker IDs
repeat
For timeStep ∈ episodeDuration do
 if agentID ≤ 2 then
 nextPosition ← predict(nextBallPosition)
 policy ← moveTo(nextBallPosition)
 else agentID > 2
 nextPosition ← predict(mostOpenSpace)
 policy ← moveTo(mostOpenSpace) + Intercept(Ball)
Until terminalState

5

Nitschke and Didi Evolutionary Policy Transfer and Keep-Away

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 62

gain control of the ball by either intercepting the ball or tackling
the keeper agent with the ball. In the former case, a taker moves
to block the ball before it reaches it the receiving keeper. In the
latter case, a taker gains control of the ball via the agent colliding
with the keeper. In both cases, the simulation task trial ends and
the time (as a portion of maximum task trial length) that the
keepers had control of the ball is recorded for the purposes of
calculating average keeper task performance at the end of the
run (Table 3). Algorithm 1 formally describes the taker team
controller.

3.2. hyperneaT: hypercube-Based neaT
Hypercube-based NEAT (HyperNEAT) (Stanley et al., 2009)
is an indirect (generative) encoding neuroevolution method
that extends NEAT (Stanley and Miikkulainen, 2002) and uses
two networks, a Composite Pattern Producing Network (CPPN)
(Stanley, 2007) and a substrate (ANN).

The CPPN is the generative encoding mechanism that indi-
rectly maps evolved genotypes to ANNs and encodes pattern
regularities, symmetries, and smoothness of the geometry of a
given task in the form of the substrate. This mapping functions
via having coordinates of each pair of nodes connected in the
substrate fed to the CPPN as inputs. The CPPN outputs a value
assigned as the synaptic weight of that connection and a value
indicating whether that connection can be expressed or not.
HyperNEAT uses the evolutionary process of NEAT to evolve

the CPPN and determine ANN fitness values. The main benefit
of HyperNEAT is scalability as it exploits task geometry and thus
effectively represents complex solutions with minimal genotype
structure (Stanley et al., 2009). This makes HyperNEAT an
appropriate choice for evolving complex multiagent solutions
(Verbancsics and Stanley, 2010; D’Ambrosio and Stanley, 2013).

HyperNEAT was selected as this study’s indirect encoding
neuroevolution method since previous research indicated that
transferring the connectivity patterns (Gauci and Stanley, 2008)
of evolved behaviors is an effective way for facilitating transfer
learning in multiagent tasks (Bahceci and Miikkulainen, 2008;
Verbancsics and Stanley, 2010). That is, HyperNEAT evolved
multiagent policies can be effectively transferred to increasingly
complex tasks (Stone et al., 2006a) without further adaptation
(Verbancsics and Stanley, 2010) and that transferred behaviors
often yield comparable task performance to specially designed
learning algorithms (Stone et al., 2006b).

HyperNEAT’s capability to evolve controllers that account
for task geometry, symmetry, and regularity also makes it
appropriate for deriving controllers that elicit behaviors robust
to variations in state and action spaces (Risi and Stanley, 2013)
and noisy, partially observable multiagent task environments
(Metzen et al., 2008).

Previous work using evolutionary policy transfer in
RoboCup keep-away (Verbancsics and Stanley, 2010; Didi
and Nitschke, 2016a,b) demonstrated that HyperNEAT is an
appropriate controller evolution method and evolves signifi-
cantly higher quality behaviors compared to other NE methods
such as NEAT (Stanley and Miikkulainen, 2002). Hence,
HyperNEAT was selected for keep-away controller evolution
in this study. Specifically, an extension to HyperNEAT called
Birds Eye View HyperNEAT (HyperNEAT-BEV) (Verbancsics
and Stanley, 2010) was for keep-away behavior evolution and
to better facilitate behavior transfer from source to target keep-
away tasks (Section 3.7).

3.2.1. HyperNEAT Keeper-Team Controller
The key feature of HyperNEAT evolved controllers is that
HyperNEAT evolved a CPPN as the mapping function
between each keeper agent’s sensory inputs and motor outputs.
HyperNEAT evolved keeper teams were homogenous, meaning
all keepers used the same ANN controller. The CPPN has five
inputs, four coordinate inputs, and a bias node with a constant
value of 1.0 (Figure 1B). The coordinates x1, y1, x2, and y2 are of
two sampled nodes (node 1 and node 2). That is, the x, y coordi-
nates of node 1 on the input of the substrate network and the x, y
coordinates of node 2 on the output of the substrate network. The
CPPN has two outputs, which are synaptic weight values assigned
to the connection between node 1 and node 2, and a connection
expression value, Link Expression Output (LEO) (Verbancsics and
Stanley, 2011), which determines whether a connection can be
created or not created.

To implement HyperNEAT controller evolution, we use
methods from previous work to represent the current keep-away
task state, which includes the virtual field size, and the relative
positions of the ball, taker, and keeper agents. Specifically, the
keep-away state representation uses the Birds Eye View (BEV)

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FigUre 1 | (a) Substrate network encoding virtual field (20 × 20 grid of inputs and outputs). (B) Connections from pairs of nodes in the substrate are sampled and
the coordinates passed as inputs to the CPPN, which then outputs the synaptic weight (connecting input and output layers in the substrate). (c) Substrate input
layer (20 × 20) corresponding to bottom layer in sub-figure (a). (D) Substrate output layer (20 × 20) corresponding to top layer in sub-figure (a). Note: this figure
assumes 3vs2 keep-away, though any keep-away task is applicable. See text (Section 3.2.1) for explanation.

6

Nitschke and Didi Evolutionary Policy Transfer and Keep-Away

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 62

extension to HyperNEAT (HyperNEAT-BEV) (Verbancsics and
Stanley, 2010).

Given that HyperNEAT-BEV uses indirect encoding it can
represent changes in task complexity without changing genotype
representation (Verbancsics and Stanley, 2010). A 20 × 20 keep-
away field was encoded on a two-dimensional substrate with
20 × 20 input layer and 20 × 20 output layer with coordinates in
the x, y plane in the range of [−1.0, 1.0], where a 400 × 400 input-
output vector yielded 160,000 possible connections. Each square
of the field was represented by a node in the substrate network.
A keeper’s position was marked with the value 1.0 and a taker
with the value −1.0.

In task trial simulation, straight line paths were calculated
from the keeper with the ball to all other agents. If the path
intersected another keeper then this node to node connection
was assigned a 0.3 value. If the path intersected a taker a −0.3
value was assigned to this node to node connection. Otherwise,
a 0.0 was assigned if there was no agent in that grid square. Thus,
the number of keepers was indicated by the number of squares
having a 1.0 value.

Figure 1 presents an example of a HyperNEAT evolved CPPN
(Figure 1B) coupled with its substrate network (Figure 1A).

This substrate encodes the task environment state as a 20 × 20
grid of inputs and a grid of 20 × 20 outputs. Connections
between input and output nodes had a value in the range:
[−1.0, 1.0]. Connections from pairs of nodes in the substrate
network are sampled and the coordinates passed as inputs to
the CPPN, which then outputs the synaptic weight of each
sampled connection (connections between the substrate input
and output layers depicted in Figure 1A). The substrate input
layer corresponds to the bottom layer in Figure 1A, where grid
cells contain values: 1: Keeper, −1: Taker, −0.3: Cell between a
keeper a ball and a taker, 0.3: Cell between a keeper with a ball
and its teammates, or 0 (white space in grid). The substrate
output layer corresponds to the top layer in Figure 1A, where
a0, a1, and a2 represent activation values for three keepers.
The keeper with the highest activation value receives a ball
pass from the keeper with the ball. If the keeper with the ball
has the highest activation value, then this keeper holds the
ball. Note that Figure 1 is an example given 3vs2 keep-away,
though any keep-away task is applicable. The CPPN input and
output nodes used linear and bipolar functions, respectively,
and the hidden layer nodes used the activation functions listed
in Table 3.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

7

Nitschke and Didi Evolutionary Policy Transfer and Keep-Away

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 62

3.3. Objective-Based Fitness Function
The OS variant of HyperNEAT (Table 1) uses a fitness function
specifically designed to direct behavior evolution in the keep-
away soccer task (Stone et al., 2006a).

3.3.1. OS Variant: Objective-Based Search
Objective-based search uses the following fitness function that
computes mean episodic length using equation (1):

fit

N
Tx

N

j=
=

∑1 .
j 1

(1)

The length of an episode x is denoted by Tx, and N is the
number of task trials, Tj is the length of task trial j. Task trial
time steps (iterations) are based on the RoboCup Soccer Server2
discrete time cycles, where each iteration is 100 ms of simula-
tion time. A task trial ends when the ball goes out of field of
play or if an opponent (taker agent) gets possession of the ball
(Section 3.1).

3.4. evolutionary search with Behavioral
Diversity Maintenance
The NS and ONS variants of HyperNEAT (Table 1) incorporated
behavioral diversity maintenance as a means to guide the evolu-
tionary search processes. The NS variant uses only Novelty Search
(Section 3.4.1), whereas the ONS variant uses a hybrid of NS and
objective-based search (Section 3.4.2) to direct the search process.

Encouraging behavioral diversity is a well-studied concept in
neuroevolution and has been used to discover novel solutions
and increase solution performance to out-perform controller
evolution approaches that encourage genotypic diversity in a
wide range of tasks (Lehman and Stanley, 2010a; Mouret and
Doncieux, 2012; Gomes and Christensen, 2013a; Urbano and
Georgiou, 2013).

3.4.1. NS Variant: Novelty Search
Novelty search (NS) (Lehman and Stanley, 2011a) is based on
the notion of behavioral diversity maintenance where a search
for novel phenotypes (behaviors) replaces the fitness function
of evolutionary search. That is, a genotype is more likely to be
selected for reproduction if its encoded behavior is sufficiently
different from all other behaviors produced thus far in an evo-
lutionary run.

Previous work indicated that controllers evolved with NS
functioned in a range of tasks of varying complexity (Velez and
Clune, 2014) and such controllers consistently out-performed
controllers evolved with objective-based search in a range of ER
tasks (Mouret and Doncieux, 2012; Gomes et al., 2015, 2016).

Given this, NS was selected as the behavioral diversity mecha-
nism to be applied as the second (NS) variant of HyperNEAT
(Table 1). In this study, the function of NS is to consistently
generate novel team (keep-away) behaviors. Hence, we define
team behavior in terms of properties that potentially influence

2 Experiments used RoboCup Keep-Away version 6 (Taylor et al., 2010). Source code
and executables can be found at: http://sourceforge.net/projects/sserver/

team behavior but are not directly used for task performance
evaluation.

To measure behavioral novelty, we use the following three
normalized task-specific behavioral vectors, where the addition
of these vectors always sums in the range: [0, 1]:

 1. Average number of passes;
2. Average dispersion of team members;
 3. Average distance of the ball to the center of the field.

This team level behavioral characterization has been used
previously (Gomes et al., 2014) and out-performs individual
behavioral characterizations and fitness-based search. Behavioral
distance is computed using the Euclidean distance (equation (2)):

 δi i ijy x y(,) = −x (2)

where, xi and yij are normalized behavioral characterization
vectors of two genotypes. The novelty is then quantified by
equation (3):

nov

k
x

i

k

j
x j ijx y= ,

= =
∑∑1

1 1

3

3
δ ()

(3)

where, δx is the behavioral distance between genotypes x and y
(equation (2)), based on the behavioral characterization vec-
tor, where xj is the jth behavior of genotype x, yij is the jth
behavior property of the ith nearest neighbor of genotype x.

For the second variant, this novelty function (equation (3))
replaces the fitness function of HyperNEAT. The novx then is
derived from the mean of behavioral distance of an individual
with k nearest neighbors. The parameter k is specified by the
experimenter to represent the number of nearest neighbors,
where k = 15 has been widely used in novelty search experiments
(Gomes et al., 2015). Some researchers have used k = 20 (Liapis
et al., 2015) and k in the range of Bahceci and Miikkulainen
(2008), Cuccu et al. (2011), and Gomes et al. (2015) though it
is unclear if values were derived experimentally. Gomes et al.
(2015) discovered that the choice of k value depends on the
type of novelty archive used and that k = 15 yielded relatively
good performance across all tested archive types. Hence, in this
study, we use k = 15. As in related work (Lehman and Stanley,
2011a), the novelty of newly generated genotypes is calculated
with respect to previously novel genotypes (behaviors) stored
in the novelty archive, where archived behaviors are ranked by
diversity. In this study the maximum archive size is 1,000, where
a maximum of 10 novel behaviors are added to the archive each
generation (Table 2).

3.4.2. ONS Variant: Novelty-Objective Search
Hybrid
A hybrid function combining non-objective-based search
(NS) and objective-based search (fitness function) to drive the
evolutionary process was selected as the next variant (ONS) of
HyperNEAT (Table 1).

To elicit further performance gains and increase solution
quality across a broad range of tasks, various researches have
investigated such hybrid functions. For example, using a weighted
balance between a fitness function and novelty metric to direct

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://sourceforge.net/projects/sserver/

TaBle 2 | Neuro-evolution (NE) and novelty search (NS) parameters and
settings.

neuro-evolution (ne) parameters setting

Population size 150
Generations (source task) 30
Generations (target task) 70
Generations (no policy transfer) 100
Maximum number of species 5
Maximum species population 30
Weight mutation ±0.01
HyperNEAT weight value range [−5.0, 5.0]
Mutation rate 0.05
Survival threshold 0.2

novelty search (ns) parameters setting
NS nearest neighbor k 15
NS-objective hybrid ρ 0.4
Maximum archive size 1,000
Maximum novel behaviors added to archive 10 (per generation)
Compatibility threshold 3
Behavioral threshold 0.03

8

Nitschke and Didi Evolutionary Policy Transfer and Keep-Away

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 62

the best results. All other novelty search parameters are the same
as used for NS variant (Section 3.4.1).

3.5. evolutionary search with genotypic
Diversity Maintenance
Previous work has demonstrated the benefits of maintaining
genotypic diversity as a means to boost the quality of evolved
behaviors for various ER tasks (Floreano et al., 2008; Doncieux
et al., 2011) and has been well explored across a broad range of
tasks in more general evolutionary computation research (Eiben
and Smith, 2003). However, the impact of using genotypic
diversity maintenance as a means to direct the evolutionary
search process, that is, selecting for novel genotypes instead of
phenotypes, as is done for novelty search (Lehman and Stanley,
2011a) has received relatively little research attention (Didi and
Nitschke, 2016a,b).

The following describes the genotypic diversity methods
used to direct evolutionary search processes of HyperNEAT,
genotypic novelty search (Section 3.5.1), and a hybrid of
objective-based search and genotypic novelty search (Section
3.5.2). One may note that these genotypic diversity maintenance
approaches work in addition to the speciation mechanism
of NEAT (Stanley and Miikkulainen, 2002) (also used by
HyperNEAT) that encourages diversity and increased explora-
tion of genotype search space.

3.5.1. GNS Variant: Genotypic Novelty Search
The next variant (GNS) uses genotypic diversity maintenance
to drive the evolutionary search process (Table 1). That is, the
GNS variant is non-objective-based search similar to NS (Section
3.4.1) except that a genotype diversity function is used instead
of behavioral diversity, meaning that the evolutionary search
process of HyperNEAT selects for novel genotypes.

The genotypic distance between two genotypes is measured
using linear combination of Excess (E) and Disjoint (D) genes
(Stanley and Miikkulainen, 2002), and a mean weight difference
of matching genes (Risi et al., 2010) (W in equation (5)). Excess
genes are those non-matching genes that are derived from one
parent later than all the genes of the other parent genotype,
whereas disjoint genes are any other non-matching genes from
either of the two parent genotypes:

δ g a b c E

N
c D
N

c W(), = + +1 2
3

(5)

where, N is the number of genes in the longest genotype of the
population, then coefficients c1, c2, and c3 are parameters used to
adjust the weighting of the three factors E, D, and W, respectively.
The sparseness (Sg) of genotype x in population evolution is com-
puted by equation (6):

S x

k

g
i

g i
k

x y() ()
=

= ,∑1
1

δ

(6)

where, yi is the ith nearest neighbor of x, k is the number of near-
est neighbors of x and δg is the compatibility distance measure
(equation (6)).

the search process (Cuccu et al., 2011), restarting converged
evolutionary runs using novelty search (Cuccu et al., 2011),
a minimal criteria (for survival and reproduction of control-
ler behaviors) novelty search (Lehman and Stanley, 2010b),
a progressive minimal criteria incrementing the requirements
for reproduction throughout the evolutionary process (Gomes
et al., 2012) and novelty search combined with speciation tech-
niques (Inden et al., 2013), with the result of yielding optimal and
near optimal solutions in various tasks including pole-balancing,
maze solving, and quadruped gait evolution tasks.

Similarly, Lehman and Stanley (2010b) found that their mini-
mal criteria novelty search evolved solutions more consistently
than objective base search. Gomes et al. (2012) found that their
progressive minimal criteria novelty metric out-performed pure
NS in a swarm robotics task. However, it has also been found that
an objective-based search can out-perform NS on the deceptive
tartarus task (Cuccu et al., 2011) as well as pole-balancing and a
visual discrimination task (Inden et al., 2013).

In line with previous research on hybrid NS and fitness
metrics supporting performance gains in various tasks (Cuccu
et al., 2011), including multi-robot ER tasks (Gomes et al., 2012),
the ONS variant uses a behavioral diversity metric that linearly
combines NS with the objective-based search (fitness func-
tions) native to HyperNEAT. Thus, we use a linear combination
of fitness and novelty scores (Gomes et al., 2014), specified in
equation (4):

 score fit novi i i= + (). ρ ρ. −1 (4)

where, fiti and novi are normalized fitness and novelty metric,
respectively. Then, ρ ∈ [0,1] is a parameter selected by the experi-
menter to control the relative contribution of each metric to the
selection pressure.

Previous work demonstrated that a medium to high novelty
weight 50–80% on average yielded the most desirable results
(Cuccu and Gomez, 2011; Gomes et al., 2012, 2013, 2014; Gomes
and Christensen, 2013a). Similarly, exploratory experiments in
this study found that a novelty weight of 40% (Table 2) yielded

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

9

Nitschke and Didi Evolutionary Policy Transfer and Keep-Away

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 62

In these experiments, we use the above measure of sparseness
(equation (6)) with and without policy transfer to ascertain if
genotypic diversity influences selection pressure toward good
solutions in the search space. The same nearest neighbor and
archive parameters are used for this genotypic diversity mainte-
nance function as used for novelty search (Section 3.4.1).

3.5.2. OGN Variant: Hybrid Objective-Genotypic
Novelty Search
The final variant (OGN) uses a combination of objective-based
search and the GNS variant (Section 3.5.1) to direct the evolu-
tionary search process (Table 1).

The OGN variant is a hybrid function that also uses equa-
tion (4), except that novi now represents the genotype diversity
metric. Similarly, ρ ∈ [0, 1] controls the relative contribution of
fitness versus genotypic diversity-directed search. We also found
that a genotypic diversity weight of 40% yielded favorable results
for this case study (Table 2).

However, in this case, equation (6) specifying the genotype
population’s mean sparseness (normalized into the range
[0, 1]) replaces the normalized novelty function value novi in
equation (4). All other parameters are the same as used for the
genotypic diversity maintenance-directed search.

3.6. Keep-away Task complexity
A key goal of this research is to evaluate various behavior evolu-
tion methods across tasks of increasing complexity (Section 1);
hence, it is necessary to define complexity in the keep-away
domain. Previous work indicated that keep-away task com-
plexity increases with the number of taker and keeper agents
(Whiteson et al., 2005; Stone et al., 2006a; Didi and Nitschke,
2016b). Complexity refers to task difficulty and thus the level of
sophistication required by evolved behaviors to solve the task.
Increasing the number of takers correlates with making success-
ful passes between keeper agents more difficult. Similarly, more
agents on the keeper team necessitates increased controller
complexity for each keeper to appropriately process increased
sensory input, as the keeper controllers must process many
more possibilities for passing the ball versus advantageous field
positions. Specifically, more keepers must be accounted for and
given a fixed field size, the potential for interference between
keepers also increases.

Consider, at each simulation iteration of TvsK keep-away
(T and K denote the number of keepers and takers, respectively,
where: T ≥ 2, K ≥ 1), each keeper must process the N × N virtual
field space, accounting for I −1 keeper teammates, J takers,
and the ball. Equation (7) specifies the calculation of keep-away
task (x) complexity:

Complexity x T

K
OBJ() = ∗

(7)

where, T and K are the total number of taker and keeper agents,
respectively. The ratio of taker to keeper agents is multiplied
by the total number of dynamic objects (all keepers, takers,
and the ball) on the field (OBJ). This is all sensory information
each keeper must process to select an action at each simulation

iteration. Given the range of keep-away tasks tested in this study
(Table 1), OBJ was in the range: Brameier and Banzhaf (2002) and
Cuccu and Gomez (2011). Complexity values were normalized
to the range: [0, 1], where the minimum and maximum taker to
keeper ratios were determined by the range of keep-away tasks
tested. Table 4 presents the keep-away tasks ordered from least
complex (4vs3) to most complex (6vs5) and corresponding task
complexity values.

As with many collective behavior tasks, we consider keep-
away to be complex, with an underlying fitness landscape that
increases in complexity with the number of agents on the field.
That is, as the number of agents increases, the amount of sensory
information that must be processed into effective motor outputs
increases. This is reflected by an increase in task dimensional-
ity and complexity (ruggedness and modality (Eiben and Smith,
2003) of the fitness landscape) that makes the discovery of
effective keep-away behaviors less probable for objective-based
(exploitative) evolutionary search processes.

Dissimilar to previous tasks that have tested behavioral
diversity maintenance methods (Lehman and Stanley, 2011a;
Gomes et al., 2015), we consider the keep-away task to be
non-deceptive. To establish that keep-away is non-deceptive,
consider that keeper-team fitness is equated with the total time
that the ball is under keeper-team control, where fitness is
rewarded at the end of a simulation task trial (Section 3.3). That
is, the nature of the keeper-away task and the fitness function
negated the possibility of a deceptive case. For example, there
was no possibility for a task instance where a keeper executed
behaviors that were deleterious to team fitness, but would be an
essential stepping stone to the eventual evolution of beneficial
behaviors. That is, deceptive fitness landscapes3 are characterized
by low fitness regions that are necessary stepping stones for
an evolutionary process to reach desired high fitness regions
(Lehman and Stanley, 2011a).

3.7. collective Behavior (Policy) Transfer
For each of the five variants of HyperNEAT (Section 3.2), we
first evolved keep-away behavior in the 3vs2 task and then
transferred evolved behavior as a starting point for further evo-
lution in more complex keep-away tasks. This section describes
the method used for collective behavior policy transfer in this
study’s experiments (Section 4).

As in related research, the Birds Eye View (BEV) extension
to HyperNEAT (Verbancsics and Stanley, 2010) was used to
facilitate evolved behavior transfer across increasingly complex
tasks. That is, a key advantage of HyperNEAT-BEV is that geo-
metric relationships encoded in evolved CPPNs are extrapolated
for varying task environment complexity. For example, as the
number of agents changes between keep-away tasks, the task
complexity also changes (Section 3.6), though connectivity
patterns encoded in evolved CPPNs have been demonstrated as
readily transferable across different tasks (Verbancsics, 2011).

3 It is important to note that there is currently no quantitative, testable, definition
of deception, that allows experimenters to quantify the degree of deception of a
given task.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

TaBle 3 | HyperNEAT CPPN functions, keep-away simulation parameters and
settings.

hyperneaT cPPn Functions

Identity x
Gaussian e x− .2 5 2

Bipolar sigmoid
2

1 4 9+ − . −
e x 1

Absolute value |x|
Sine Sine(x)

Keep-away simulation parameters Parameter setting
Number of runs 20
Iterations per task trial 4,500
Task trials per generation 30
Maximum task trial length 18 s
Agent positions Random
Environment size 20 × 20 grid
Agent speed (per iteration) 1 grid cell
Ball speed (per iteration) 2 grid cells
Task performance Maximum keeper-team ball hold time

(for one run of a given method and task)
Policy transfer threshold Average maximum task performance

for given task without policy transfer

algOriThM 2 | Collective Behavior Policy Transfer.

Current evolved population = Population of Πsource networks
For each genotype (CPPN) in Πsource do
 Generate a network with same number of inputs and outputs as in the
Πsource

 Add the same number of hidden nodes to Πtarget as in Πsource

 For each pair of nodes (ni, nj) in Πtarget do
 if ∃ link Li j ∈ Πsource then
 add link Li,j to Πtarget with i, j

t
i, j

sw = w in Πsource

TaBle 4 | Normalized task complexity calculated for each keep-away task.

Keep-away task version Keep-away normalized task complexity

5vs3 0.54
4vs3 0.60
6vs4 0.73
5vs4 0.80
6vs5 1.0

10

Nitschke and Didi Evolutionary Policy Transfer and Keep-Away

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 62

In preliminary parameter tuning experiments done in previ-
ous research (Didi and Nitschke, 2016b), several approaches
for collective behavior policy transfer were tested, though the
following approach was found to be the most effective for all
HyperNEAT variants and all keep-away tasks tested in this study.
Specifically, the entire evolved population was transferred from
the source task (at the final generation of neuroevolution) and
set as the initial population for keep-away behavior evolution in
the target task. This approach was selected given its similarity to
incremental learning (Gomez and Miikkulainen, 1997), which
has been demonstrated as beneficial for evolving effective solu-
tions to increasingly complex tasks.

This approach is presented in algorithm 2, where collective
(keep-away) policy transfer takes place between the source task
(3vs2 keep-away) and target tasks of differing complexities
(Table 1). That is, the final HyperNEAT evolved population of
CPPNs is copied as the initial population in the given target task,
where varying behavioral complexity is encoded in the CPPN
but the substrate network representation remains constant
(Figure 1) during policy transfer.

4. eXPeriMenTs

This study’s experiments evaluated the effectiveness and
efficiency (Section 1) of five variants of HyperNEAT for evolving
keep-away behavior in a source task (3vs2 Keep-Away) and then
transferring evolved behaviors to progressively more complex
target tasks. That is, 4vs3, 5vs3, 5vs4, 6vs4, and 6vs5 keep-away
(Table 1).

4.1. experiment goals
Experiments were designed to address this study’s key objec-
tive (Section 1), to ascertain the most appropriate NE method
for facilitating evolved collective behavior policy transfer to
boost solution quality. High-quality solutions are those evolved
behaviors yielding the highest average maximum task perfor-
mance. In these experiments, RoboCup keep-away (Taylor et al.,
2010) is the collective behavior case study, where we measure
the effectiveness and efficiency of evolved keep-away behaviors
across increasing complex keep-away tasks (Section 3.6).

Effectiveness is improved average task performance after
behavior transfer between source and target tasks, where
transferred keep-away behaviors are further evolved. Average
task performance is measured as the total time for which the
ball is under control of the keeper team, calculated as the
maximum taken at the end of each run and averaged over all

runs. Efficiency is the average number of generations taken by
transferred behaviors to reach a task performance threshold. The
task performance threshold for collective behavior policy trans-
fer is the average maximum task performance (over 20 runs)
of behaviors evolved in a given task without policy transfer
(Table 3).

4.2. experiment Types
Non-policy transfer experiments were those in which keep-
away behaviors were evolved in each of the target keep-away
tasks for 100 generations using the five variants (Table 1) of
HyperNEAT (Figure 2). That is, this is the case where no policy
transfer took place and keep-away behaviors were evolved from
scratch in all tasks. Policy transfer experiments were those where
keep-away behaviors were first evolved in the source task for
three keepers versus two takers (3vs2) on the 20 × 20 simulated
keep-away field for 30 generations. Evolved behaviors were then
transferred and further evolved in each target task (Table 1)
for another 70 generations, where 70 generations was selected
for consistency (number of generations in total) in the com-
parison between experiments with policy transfer and without
policy transfer.

4.3. collective (Keep-away) Behavior
evaluation
For both policy transfer and non-policy transfer experiments,
average fitness per genotype (keep-away team) was calculated

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FigUre 2 | Average normalized maximum task performance for HyperNEAT variants with (left column) and without (right column) policy transfer in each target task.
OS, objective-based; NS, Novelty Search; ONS, Objective-Novelty hybrid; GNS, Genotypic novelty search; OGN, Objective-GNS hybrid. Averages are over 20 runs.
Bold Ons indicates that the ONS variant yields a higher average task performance (with statistical significance, Mann–Whitney U test, p < 0.05) for all tasks (given
policy transfer). This significant difference holds for ONS over other variants (with policy transfer) and between ONS (with policy transfer) and all variants (without
policy transfer).

11

Nitschke and Didi Evolutionary Policy Transfer and Keep-Away

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 62

over 30 task trials per generation, where the maximum fitness
was selected after 100 generations and an average maximum was
calculated over 20 runs. Each task trial tested different (random)
agent positions and the ball always started in the possession of a
randomly selected keeper agent.

Figure 2 presents the average maximum task performance
of each HyperNEAT variant, respectively, in each target task.
To highlight the benefits of using HyperNEAT to facilitate

(keep-away behavior) policy transfer, average task performance
results of non-policy transfer experiments are included for each
task.

Table 5 presents the average method efficiency of each
HyperNEAT variant in each target task. Task performance effi-
ciency results from experiments that do not use policy transfer are
included to further highlight the benefits of using HyperNEAT to
facilitate policy transfer.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

TaBle 5 | HyperNEAT variant efficiency comparison with policy transfer (PT) and
no policy transfer (No PT).

Task hyperneaT Os
threshold

hyperneaT search
efficiency

no PT PT

4 vs 3 0.662 61 30
5 vs 3 0.687 65 25
5 vs 4 0.650 61 34
6 vs 4 0.645 62 41
6 vs 5 0.614 90 29

Task hyperneaT ns
threshold

hyperneaT search
efficiency

no PT PT

4 vs 3 0.580 77 19
5 vs 3 0.591 82 21
5 vs 4 0.574 89 16
6 vs 4 0.560 77 15
6 vs 5 0.559 85 30

Task hyperneaT Ons
threshold

hyperneaT search
efficiency

no PT PT

4 vs 3 0.689 80 44
5 vs 3 0.721 71 43
5 vs 4 0.654 66 22
6 vs 4 0.648 88 44
6 vs 5 0.632 63 36

Task hyperneaT gns
threshold

hyperneaT search
efficiency

no PT PT

4 vs 3 0.487 63 29
5 vs 3 0.491 86 35
5 vs 4 0.474 81 15
6 vs 4 0.481 80 25
6 vs 5 0.473 54 21

Task hyperneaT Ogn
threshold

hyperneaT search
efficiency

no PT PT

4 vs 3 0.500 68 21
5 vs 3 0.521 62 23
5 vs 4 0.494 70 16
6 vs 4 0.481 82 19
6 vs 5 0.480 52 21

OS, objective-based search; ONS, objective-novelty search hybrid; NS,
novelty search; GNS, genotypic novelty search; OGN, objective-GNS hybrid.
Search efficiency: average number of generations to reach the threshold for
the given variant. Threshold: average maximum task performance without PT.
Bold values indicate (for each task) variants with the highest average efficiency
given PT.

12

Nitschke and Didi Evolutionary Policy Transfer and Keep-Away

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 62

5. resUlTs

To address this study’s research objective (Section 1) and inves-
tigate the impact of objective (Section 3.3) versus non-objective
(Sections 3.4–3.5) based search on the evolution of collective
behaviors transferred to increasingly complex keep-away tasks,
we present results demonstrating comparative method effective-
ness and efficiency.

Effectiveness was improved average task performance after
behavior transfer between source and target tasks, where
transferred keep-away behaviors are further evolved for 100
generations (Table 2). In this case study, task performance was
a measure of a keep-away team’s capability to control the ball
and keep it from taker agents. That is, task performance was
calculated as the total time for which the keeper team had the
ball in their possession, normalized into the range: [0, 1] and
averaged over all runs. Normalization was done with respect to
the average maximum episode length (Table 3), calculated for all
methods applied to each task.

Efficiency was the average number of generations taken by
transferred behaviors to reach a task performance threshold.
The task performance threshold for collective behavior policy
transfer4 is the average maximum task performance (over 20
runs) of behaviors evolved in a given task without policy transfer
(Table 3).

5.1. average Task Performance
comparison
Figure 2 presents the average maximum task performance
(normalized to the range: [0.0, 1.0]) for the HyperNEAT variants
(Table 1), respectively. Comparative box-plots are presented for
all keep-away tasks with policy transfer (Figure 2, left column)
and without policy transfer (Figure 2, right column).

Results data were found to be non-parametric using the
Kolmogorov–Smirnov normality test with Lilliefors correction
(Ghasemi and Zahediasl, 2012). Mann–Whitney U statisti-
cal tests (p < 0.05) (Flannery et al., 1986) were then applied
in pair-wise comparisons between average task performance
results yielded by the HyperNEAT variants in each keep-away
task (Table 1). Statistical tests were applied in pair-wise com-
parisons, with Effect Size (Cohen, 1988) treatment, between
average task performance results in the following cases, where
complete overview of all statistical tests is in Appendix A in
Supplementary Material.

First, comparisons between average task performance results
yielded by all method variants with and without policy transfer.
That is, for each task, the average task performance of each vari-
ant of HyperNEAT given policy transfer was compared with each
variant without policy transfer. Section 5.1.1 outlines all such
comparisons and the results of statistical tests. Second, average
task performance comparisons between all method variants in
each keep-away task where only results given policy transfer were
considered. Section 5.1.2 outlines all such comparisons and the
results of statistical tests.

5.1.1. Task Performance Comparison: Policy versus
No Policy Transfer
Statistical tests were applied in pair-wise comparisons between
average task performances yielded by each HyperNEAT variant
with policy transfer and without policy transfer, indicating that,
for all keep-away tasks, variants with policy transfer yielded a

4 Collective behavior transfer, behavior transfer and policy transfer are used
interchangeably.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

13

Nitschke and Didi Evolutionary Policy Transfer and Keep-Away

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 62

significantly5 higher average task performance. Exceptions where
there was no significant difference between the average task
performance of method variants are outlined in Appendix A in
Supplementary Material.

5.1.2. Task Performance Comparison:
Given Policy Transfer
To evaluate the efficacy of HyperNEAT variants in each target
task given policy transfer, pair-wise statistical comparisons
were applied between all method variants for each task. That
is, where keep-away behavior had been further evolved by a
given HyperNEAT variant after policy transfer. Comparisons
of average task performance results for all variants given policy
transfer, indicated that for all tasks, the ONS variant, given policy
transfer yielded a significantly higher average task performance
compared to the other HyperNEAT variants. Exceptions that
resulted in no statistically significant difference in average task
performance between pairs of HyperNEAT variants are outlined
in Appendix A in Supplementary Material.

5.2. average Method efficiency
comparison
The next set of statistical comparisons was between all method
variants with respect to method efficiency (Table 5). Specifically,
statistical tests were applied in pair-wise comparisons between
average method efficiency results in the following cases.

First, we compared average efficiency results of all method
variants with and without policy transfer in each task (PT
and No PT in Table 5, respectively). That is, for each task, the
average HyperNEAT efficiency for each variant with policy
transfer was compared to each variant without policy transfer.
Section 5.2.1 describes these comparisons and statistical
test results. Second, we compared average efficiency results
between all method variants given policy transfer in each task.
Section 5.2.2 presents these comparisons and the results of
statistical tests.

Method efficiency was measured as the number of generations
taken by HyperNEAT variants to attain a given task performance
threshold in each target task. This threshold was the average
maximum task performance (calculated over 20 runs) without
policy transfer for a given method and task. When comparing
average efficiency between methods with and without policy
transfer, for method variants without policy transfer we simply
used the task performance threshold itself for the comparison.
That is, the average number of generations taken to reach the
average maximum task performance, for a given method in a
given task, without policy transfer, was compared to the average
number of generations taken to reach the same threshold for a
method using policy transfer in the same task.

5.2.1. Efficiency Comparison: Policy Transfer
versus No Policy Transfer
Statistical tests indicated that for all tasks, a significantly higher
efficiency was observed for all HyperNEAT variants, given policy

5 Significant refers to a statistically significant difference in pair-wise comparison
of two data-sets.

transfer compared to the same method variants without policy
transfer. Exceptions where there was no significant difference are
outlined in Appendix A in Supplementary Material.

5.2.2. Efficiency Comparison: Given Policy Transfer
As with task performance comparisons (Sections 5.1.1 and
5.1.2), statistical tests indicated that given policy transfer, on
average for all tasks, the OGN variant of HyperNEAT yielded
a significantly higher average efficiency over the other vari-
ants. Comparisons that resulted in no statistically significant
difference in method efficiency are outlined in Appendix A in
Supplementary Material.

6. DiscUssiOn

This section discusses the capacity of each HyperNEAT variant
(OS, NS, ONS, GNS, and OGN) to balance exploitation versus
exploration during evolutionary search for facilitating efficient
evolution of high-quality keep-away behaviors. Exploitation is
the average maximum task performance of evolved behaviors
and exploration is the fitness diversity of the fittest evolved
behavior populations. Efficiency was measured as the number
of generations (genotype evaluations) for a given method to
attain task performance thresholds. For a given method variant
and task, this threshold was calculated as the average maximum
fitness attained without policy transfer (Section 5.2).

Since previous work (Verbancsics and Stanley, 2010;
Didi and Nitschke, 2016a,b) and additional experimental
results (Section 5) have already demonstrated the benefits of
HyperNEAT behavior evolution coupled with policy transfer,
this discussion focuses on evolved behavior analysis for policy
transfer results only. That is, this study’s policy transfer results
already demonstrate the same benefits as previous policy-
transfer work. For example, jump-start: average task perfor-
mance was improved in the target task after behavior transfer
from a source task, asymptotic performance: final average
maximum task performance was significantly higher, and time
to threshold: the evolutionary time taken to evolve the fittest
behaviors was reduced given policy transfer (Taylor and Stone,
2009; Taylor et al., 2010).

This section first discusses relationships between the fittest
behaviors evolved by each HyperNEAT variant and the com-
plexity of the evolved CPPNs corresponding to these behaviors
(Section 6.1). The analysis tests a hypothesis that behavioral
diversity evolves relatively high quality yet simple controllers,
unhindered by unnecessary redundancy and complexity (Lehman
and Stanley, 2011a; Gomes et al., 2013).

6.1. network complexity of evolved
Behaviors
Previous work has examined network complexity of NEAT
evolved controllers given objective-based and novelty search
(Lehman and Stanley, 2011a; Gomes et al., 2013), suggesting that
novelty search evolves high-quality behaviors defined by struc-
turally simple controllers. However, there has been little work
investigating the complexity of HyperNEAT evolved controllers

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

TaBle 6 | Average normalized complexity of CPPNs corresponding to fittest evolved behaviors, for each HyperNEAT variant and each keep-away task, given behavior
transfer.

Task average evolved network (cPPn) complexity

Os Ons ns Ogn gns

4vs3 0.516 ± 0.051 0.499 ± 0.055 0.477 ± 0.037 0.544 ± 0.041 0.795 ± 0.039
5vs3 0.521 ± 0.042 0.501 ± 0.035 0.493 ± 0.030 0.556 ± 0.041 0.771 ± 0.42
5vs4 0.531 ± 0.046 0.501 ± 0.030 0.495 ± 0.026 0.559 ± 0.053 0.829 ± 0.053
6vs4 0.538 ± 0.042 0.502 ± 0.041 0.497 ± 0.041 0.556 ± 0.049 0.832 ± 0.066
6vs5 0.539 ± 0.046 0.504 ± 0.051 0.560 ± 0.051 0.560 ± 0.051 0.861 ± 0.048

Bold values indicate variants with the lowest average CPPN complexity (for each task).
There was no statistically significant difference between average complexity values yielded by ONS and NS, but significant difference between NS, ONS, and other variants.

14

Nitschke and Didi Evolutionary Policy Transfer and Keep-Away

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 62

given evolutionary search driven by behavioral diversity main-
tenance versus objective-based search (Morse et al., 2013).
Related research has suggested that as task complexity increases,
simpler HyperNEAT evolved networks (CPPNs), resulting from
specially placed neurons and limited connectivity, potentially
results in higher quality behaviors (Risi and Stanley, 2011; Berg
and Whiteson, 2013).

With the exception of preliminary work (Morse et al., 2013),
the impact of behavioral diversity maintenance versus objec-
tive-based search on the complexity of evolved HyperNEAT
networks as task complexity increases, remains unclear. In this
study, network complexity is the number of connections and
neurons (Abu-Mostafa, 1989) of the CPPN corresponding to
the fittest evolved behavior in each run (equation (8)):

E

N
n nx

i

N

c n= +
=
∑1

1

()

(8)

where, N is the number of runs, nc, nn, is the number of network
connections and hidden nodes, respectively. For clarity, network
x complexity (E) is normalized to the range: [0.0, 1.0]. A 1.0
value indicates maximum network complexity as observed for
behaviors evolved with each HyperNEAT variant.

Table 6 presents, for each keep-away task, an overview
of average network complexity corresponding to the fittest
behaviors evolved by each HyperNEAT variant (at generation
100, Table 2). For each variant, evolved network complexity
is presented together with SDs, where complexity values for
each variant are averages calculated over the 20 fittest evolved
networks taken at the end each run. Table 6 indicates the fit-
test ONS and NS evolved behaviors correspond to CPPNs
with comparable network complexity (supported by statistical
comparisons). However, the OS, OGN, and GNS variants all
evolved significantly higher average network complexity for all
tasks, where the GNS variant evolved the highest overall network
complexity.

That is, pair-wise statistical comparisons (Mann–Whitney
U, p < 0.05) between average network complexity results,
indicated that the fittest behaviors evolved by NS and ONS, for
all tasks, corresponded to significantly simpler networks.6 These
results lend support to the hypothesis that behavioral diversity

6 Appendix B in Supplementary Material presents an overview of average complex-
ity yielded for all evolved controllers and statistical test results between average
controller complexities for all variants.

maintenance search variants (NS, ONS) evolve simple CPPNs
that encode high-quality behaviors, compared to objective-
based (OS) and genotypic diversity maintenance search variants
(OGN, GNS).

For a more detailed view, Table 7 presents network complex-
ity and efficiency values corresponding to the fittest behaviors
evolved by each variant in each keep-away task. As an indica-
tion of how evolved network complexity relates to task perfor-
mance, the left-most column of Table 7 presents the average
task performance range (in successive five percentile groups)
that the fittest networks fall into. Also, to indicate how efficient
each variant was at evolving simple or complex networks, the
generations column presents the average number of generations
taken to evolve the given networks.

Table 7 further supports the hypothesis that behavior
diversity maintenance methods evolve simple and high-quality
controllers, as for all keep-away tasks, the ONS variant evolved
minimal average network complexity and the highest average
task performance. In some tasks, a significantly lower network
complexity was evolved by the NS variant, but in these tasks
NS evolved also yielded a lower average task performance. For
example, in 6vs5 keep-away (the most complex task, Section
3.6), the fittest ONS evolved behaviors corresponded to average
network complexity: 0.449 and task performance range: [0.65,
0.7), where the fittest NS evolved behaviors corresponded to
average network complexity: 0.430 and performance range:
[0.60, 0.65).

Similar results were observed in the 6vs4, 5vs4, and 5vs3
keep-away tasks. For the simplest task (4vs3 keep-away), aver-
age network complexity of the fittest ONS evolved behaviors
were significantly higher than the fittest NS evolved behaviors,
though task performance of ONS evolved behaviors was
significantly higher. However, in the task performance range:
[0.6, 0.65), ONS evolved behaviors yielded a significantly
lower average network complexity of 0.408, versus 0.414 for
NS evolved behaviors.

These results narrow the focus of the hypothesis about the
benefits of behavior based search, via indicating that ONS yields
further benefits in terms of evolving highly fit yet topologically
simple controllers. In particular, these results support the notion
that ONS, compared to NS, is the preferred evolutionary search
method for discovering high-quality behaviors encoded by
relatively simple controllers, devoid of unnecessary topological
complexity and redundancy.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

TaBle 7 | Average normalized CPPN complexity (neurons and connections, over 20 runs) for the fittest behaviors evolved by each HyperNEAT variant for each keep-
away task.

Task performance Keep-away 4vs3

generations complexity

Os Ons ns Ogn gns Os Ons ns Ogn gns

0.45 – – – 1 5 – – – 0.404 0.439
0.50 – – 1 21 72 – – 0.380 0.436 0.726
0.55 1 1 6 – – 0.386 0.379 0.386 – –
0.60 4 5 34 – – 0.411 0.408 0.414 – –
0.65 25 21 – – – 0.446 0.424 – – –
0.70 88 53 – – – 0.476 0.450 – – –

Task performance Keep-away 5vs3

generations complexity

Os Ons ns Ogn gns Os Ons ns Ogn gns

0.45 – – – 1 11 – – – 0.414 0.466
0.50 – – 1 10 72 – – 0.397 0.433 0.740
0.55 2 1 3 48 – 0.403 0.399 0.402 0.455 –
0.60 4 4 32 – – 0.419 0.406 0.424 – –
0.65 9 14 – – – 0.421 0.409 – – –
0.70 48 27 – – – 0.424 0.414 – – –

Task performance Keep-away 5vs4

generations complexity

Os Ons ns Ogn gns Os Ons ns Ogn gns

0.45 – – – 1 5 – – – 0.425 0.484
0.50 – – 1 23 90 – – 0.399 0.440 0.799
0.55 1 1 2 – – 0.417 0.402 0.401 – –
0.60 7 5 37 – – 0.419 0.407 0.424 – –
0.65 34 18 – – – 0.433 0.418 – – –
0.70 – 78 – – – – 0.443 – – –

Task performance Keep-away 6vs4

generations complexity

Os Ons ns Ogn gns Os Ons ns Ogn gns

0.45 – – – 1 1 – – – 0.447 0.457
0.50 – – 1 35 75 – – 0.408 0.485 0.755
0.55 1 1 10 – – 0.405 0.401 0.413 – –
0.60 16 8 70 – – 0.423 0.421 0.435 – –
0.65 46 42 – – – 0.441 0.435 – – –
0.70 – – – – – – – – – –

Task performance Keep-away 6vs5

generations complexity

Os Ons ns Ogn gns Os Ons ns Ogn gns

0.45 – – – 1 1 – – – 0.457 0.464
0.50 – – 1 45 91 – – 0.402 0.498 0.814
0.55 1 1 17 – – 0.413 0.410 0.416 – –
0.60 17 10 83 – – 0.432 0.419 0.430 – –
0.65 86 61 – – – 0.480 0.449 – – –
0.70 – – – – – – – – – –

The task performance column indicates which 5 percentile group these fittest behaviors are in and the Generations column indicates the average number of generations taken to
evolve the corresponding best performing behaviors and network complexity.
Bold values indicate the ONS variant has the lowest average CPPN complexity and highest average task performance and efficiency (for all tasks).

15

Nitschke and Didi Evolutionary Policy Transfer and Keep-Away

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 62

The suitability of ONS for evolving high-quality (effective)
behaviors encoded by simple controllers (networks) is further
evidenced by the efficiency (generations) values in Table 7. For

each task, the ONS variant takes fewer generations, compared
to the other search variants, to evolve its fittest behaviors, where
such behaviors are encoded by relatively simple controllers. For

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

16

Nitschke and Didi Evolutionary Policy Transfer and Keep-Away

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 62

example, in 6vs5 keep-away, NS takes an average of 83 genera-
tions to evolve networks with an average complexity of 0.430 in
the task performance range: [0.6, 0.65), whereas ONS took 10
generations to evolve networks with an average complexity
of 0.419 in the same performance range. Similar results were
observed for all variant comparisons in all keep-away tasks.
Comparatively, NS and GNS required longer search periods to
discover their fittest behaviors. This results from NS and GNS
search mechanisms optimizing for the exploration of novel
behaviors and genotypes, meaning an overall broader explora-
tion and discovery of diverse network topologies (Lehman and
Stanley, 2011a; Gomes et al., 2013).

Table 7 further supports previous results demonstrating
that behavioral diversity maintenance enables simple control-
ler and high-quality behavior evolution (Lehman and Stanley,
2011a; Gomes et al., 2013). That is, OS, OGN, and GNS vari-
ants all yield significantly higher average network complexities
for the fittest behaviors evolved in each task, where the GNS
variant evolved the most complex networks overall.

Observing Table 7, for all tasks, when the average network
complexity of OS and NS evolved behaviors is compared in
the same performance category, both OS and NS yielded
comparably complex networks, and in some tasks OS evolved
networks were slightly less complex. Also, for all tasks, OS
was significantly more efficient (generations taken) to evolve
these comparable networks, and overall, OS evolved behaviors
were significantly fitter. This supports the benefits of purely
exploitative evolutionary search for boosting solution quality
in the keep-away task. However, overall, the combination of
novelty and objective-based search (ONS) yielded the most
benefits, demonstrated by the efficient evolution of high-qual-
ity behaviors encoding significantly simple networks (Tables 6
and 7). Also, ONS, OS, and NS explored comparable ranges
of network topologies; however, the range and complexity
of ONS topologies corresponded to significantly higher task
performance behaviors with few exceptions (Section 5) for all
keep-away tasks.

These results contribute to this study’s main hypothesis that
the ONS variant is most appropriate for balancing exploration
versus exploitation during evolutionary search to efficiently
evolve effective (high-quality) behavioral solutions to complex
tasks (Section 1). Furthermore, these results lend support to
the notion that behavioral diversity maintenance methods such
as NS (Lehman and Stanley, 2011a) are suitable for evolving
high-quality behaviors in complex tasks encoded by relatively
simple controllers. Though, these results indicate that the hybrid
search approach adopted by ONS elicits certain benefits over
NS. For example, a more efficient search process, less complex
controllers, and evolved behaviors with significantly higher task
performance in most tasks (with few exceptions, Section 5). The
following Section 6.2 continues the results analysis, elucidating
the exploration versus exploitation capacity of each search vari-
ant with behavior space visualizations.

6.2. Behavioral space analysis
To elucidate each HyperNEAT search variant’s capacity to
explore behavior spaces defining each keep-away task and thus

the efficiency and effectiveness of each variant’s behavioral
evolution, we applied dimensionality reduction to the final
generation of behaviors evolved by each variant to visualize the
contribution of various behavioral components to the fittest
behaviors types and the diversity of behavior types discovered.

Since the keep-away tasks are defined by high dimensional
behavior spaces (Section 3.6), we used Self-Organizing Maps
(SOMs) (Kohonen, 1990) to reduce final generation behavior
spaces (for each variant) to 10 × 10 maps visualizing behavior
types.7 SOMs were selected as previous work (Gomes et al., 2013)
indicated their suitability for mapping high dimensional behavior
spaces into low dimensional visualizations preserving the salient
topological relations between behavioral features.

For all keep-away tasks, the final generation behavior popula-
tion evolved by each variant was used to create compact two-
dimensional SOM representations of discrete behavior types
(Figure 4).8 These SOMs were trained with behavior vectors
characterizing keep-away behaviors, where such vectors were
constituted by three components: average number of passes,
dispersion of team members, and distance of the ball to the center
of the field (Section 3.4). For added clarity in the SOM behavior
type visualizations, we also included average keeper team ball
control time (episode length in Figure 4) as a behavioral task
performance indicator.

For succinctness of discussion, we only visualized behavior
types for search variants in the most complex task, 6vs5 keep-
away (Figure 4). This task was selected as we want to evaluate
the capacity of each search variant to discover effective behavior
types in high-dimensional behavior spaces (as typified by 6vs5
keep-away). Also, similar patterns of behavior type explora-
tion and behavioral diversity were observed for given variants
applied in each task. Furthermore, we do not present or discuss
behavior maps for behavior types evolved at the final generation
of OGN and GNS variants, since these variants yielded signifi-
cantly lower average task performances, compared to ONS, NS,
and OS, for all tasks (Section 5). For reference, Appendix C in
Supplementary Material presents behavior type visualizations
for all search variants applied in all tasks.

Figure 4 presents behavior type visualizations for 20 behav-
ior populations produced by each variant at the final generation
in 6vs5 keep-away. Figure 4 (left) depicts 10 × 10 behavior types
visualized as circles composed of four slices. Each slice corre-
sponds to a behavioral component: number of passes, dispersion
of team members, distance of the ball to the field’s center, and
episode length, where component slice size corresponds to its
average value. Thus, varying combinations of behavioral com-
ponent values define varying behavior types, where behavior
types are arranged on the map according to relative behavioral
component values. For example, the right hand side of the OS
behavior type map in Figure 4 (left) depicts behavior types with
relatively high values for distance to field’s center, whereas the
left hand side depicts behavior types with relatively low values

7 A 10 x 10 map size was selected as this is the half the ANN sensory input layer
size (Section 3.2.1).
8 All SOM visualizations for all variants and tasks are presented in Appendix C in
Supplementary Material.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

17

Nitschke and Didi Evolutionary Policy Transfer and Keep-Away

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 62

for each component. Behavior types containing larger values
for episode length are progressively presented toward the bot-
tom row.

To complement behavior type visualizations, Figure 4 (right)
presents unified distance matrices (u-matrices) visualizing
behavior type clusters at each variant’s final generation in 6vs5
keep-away. Vector quantization (Gersho and Gray, 1992) was
applied between SOM nodes (Figure 4, left) to gauge behavioral
distances (normalized Euclidean distance) between behavior
types.9

The u-matrix in Figure 4 (right) visualizes the behavioral
distance between each node in the behavior type map. Darker
colors denote closer behavioral distances and lighter colors
denote larger differences between two behavior types. Darker
areas are equated with clusters of similar behavior types and
lighter areas are tantamount to cluster separators (Ultsch and
Siemon, 2001). Any two u-matrix nodes can be compared to
ascertain their behavioral distance, where a given coordinate in
the u-matrix (Figure 4, right) corresponds to the same coordi-
nate in the behavior type map (Figure 4, left).

Observing the ONS behavior type map in Figure 4 (left),
the fittest behavior types are characterized by the following
components. First, a predisposition to maximizing keeper
distance from the field’s center, with relatively few passes and
little keeper-team dispersion (ONS behavior type map coordi-
nates: 9, 10). Second, a high number of passes with little team
dispersion and distance to the field’s center (ONS behavior
type map coordinates: 4, 10). Comparatively, the fittest OS
evolved behavior type had a similarly large episode length (OS
behavior type map coordinates: 10, 10), though overall the OS
behavior type map indicates lower episode lengths (fitness)
associated with each behavior type in the map (Figure 4, left).
This difference between ONS and OS behavior type maps is
supported by the significantly lower average task performance
of OS (compared to ONS) evolved behaviors in 6vs5 keep-away
(Section 5). Similar to a fittest ONS evolved behavior type (ONS
behavior map coordinates: 9, 10), the fittest OS evolved behav-
ior type had a predisposition for keepers to maximize their
distance from the field’s center while the team stayed relatively
compact (little dispersion) and making relatively few passes.
This behavioral bias toward keepers maximizing distance to
the field’s center was found to be common to all the fittest OS
and ONS evolved behavior types across all keep-away tasks
(Appendix C in Supplementary Material).

Observing the NS behavior type map (Figure 4, left), it is
notable that similar to the other fittest ONS evolved behavior
type (ONS behavior type map coordinates: 4, 10), the fittest NS
evolved behavior type maximized the number of passes, while
keepers maintained relatively little dispersion and distance from
the field’s center (NS behavior coordinates: 10, 10). Thus, the
same prevalent behavioral component was present in the fittest
NS and ONS evolved behavior types. However, as with compari-
sons between the ONS and OS behavior maps, the fitness of NS

9 All SOM visualizations for all search variants applied in each task are presented in
Appendix C in Supplementary Material.

evolved behavior types, overall, was observed to be lower than
that of OS evolved behavior types (Figure 4, left).

A key difference between the fittest ONS, OS, and NS
evolved behavior types was the multitude of comparably fitter
ONS evolved behavior types, as evident in the ONS behavior
map (Figure 4, left). That is, the fittest ONS behavior types
comprised specific combinations of behavioral component
values that resulted in high task performance, whereas OS and
NS evolved behavior types, despite having biases to some of the
same prevalent behavior components, failed to discover such
particular weightings of the behavioral components and thus
failed to achieve comparable fitness values. This is supported
by the significantly lower average task performance of the fit-
test OS and NS evolved behaviors compared to the fittest ONS
evolved behaviors (Section 5). The capacity of ONS to evolve
multiple highly fit behavior types and OS and NS to evolve
relatively few is elucidated by visualizing the diversity between
behavior types in the behavior space at the final generation of
each variant.

The following describes u-matrices as complementary beha-
vior space visualization tools to further explain differences
between ONS, OS, and NS evolved behavior types. Consider
the u-matrices corresponding to the OS, NS, and ONS behavior
type maps (Figure 4, right). Each u-matrix illustrates a represen-
tation of how the final generation of behaviors evolved by each
variant are topologically related to each other in the behavior
space. This provides an indication of the diversity of evolved
behavior types and thus the relative ease or difficulty for different
search variants to discover highly fit behavior types. Comparing
the OS, NS, and ONS u-matrices (Figure 4, right), it is notable
that the ONS u-matrix depicts overall greater behavior distances
(lighter shading), between clusters of highly fit behavioral types
and relatively small behavioral distances (darker shading) within
clusters of similar behavior types.

For example, consider a fittest ONS behavioral type (behav-
ior map and u-matrix coordinates: 4, 10). This behavior type
is relatively close in the behavioral space to another highly fit
behavior type (behavior map and u-matrix coordinates: 9,
10), given comparable cell coloration in the u-matrix and thus
negligible behavioral distance between these two behavior
types. Furthermore, for both these behavior types, the adjacent
(surrounding) u-matrix cells depicts minor differences in cell
coloration (especially for cells on the left) indicating relatively
close behavioral distances to these other behavior types. These
behavior type clusters share some behavioral component biases.
For example, the behavior type at coordinates: (9, 10), shares
a bias toward maximizing keeper distance to the field’s center,
with its neighboring behavior types, thus forming a cluster of
similar behavior types. Similarly, the behavior type at behavior
map coordinates: (4, 10) shares a bias to maximize the number
of keeper passes, with its neighboring behavior types, thus form-
ing a second cluster of similar behavior types. A third highly fit
behavior type cluster can be observed in the top right of the ONS
behavior type map and u-matrix (Figure 4). That is, there is little
coloration difference between u-matrix cell coordinates: (1, 4),
its neighboring cells, and the behavior type clusters defined by
cell coordinates: (4, 10), (9, 10), and their surrounding cells.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

18

Nitschke and Didi Evolutionary Policy Transfer and Keep-Away

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 62

Also, the overall cell coloration of the ONS u-matrix is
rela tively light with few dark patches, indicating an overall
broad spread in behavioral distances between the behavior
types evolved at the final generation of the ONS variant. This
equates to the ONS variant operating in a large but highly fit
behavior space region, with little behavioral distance between
the fittest clusters. Discovery of the absolute fittest behavior
types was enabled by the ONS objective function exploiting
fitness gradients between these highly fit behavior type clusters
and the overall diversity of the behavior space covered by all
final generation behavior types is indicative of ONS behavioral
diversity maintenance.

Comparing NS and ONS u-matrices, the overall light color-
ing of the NS u-matrix (Figure 4, right), indicates slightly more
pronounced behavior type diversity at the final generation
of NS. However, a cluster of closely related behavior types is
evidenced by a series of dark patches stretching from the bot-
tom left to the top right corner of the NS u-matrix (Figure 4,
right). On both sides of this cluster (top left and bottom right
hand corner, Figure 4) is a broad spread of relatively dissimilar
behavior types, indicating a correspondingly broad behavior
space exploration. This diversity of NS evolved behaviors is
supported by related behavior space visualizations (Section
6.3). A key difference between NS and ONS evolved behavior
types is evident from observing the corresponding NS and ONS
behavior type maps (Figure 4, left). Overall, fitness associated
with NS evolved behavior types was relatively low, as observed
by the spread of dissimilar behaviors observed in the top-left
hand corner of the NS u-matrix (Figure 4, left). Comparatively
low fitness values were not observed for most ONS behavior
types, even though a comparable diversity in behavior types was
observed (Figure 4, left). This is supported by the significantly
lower average task performance yielded by NS evolved behav-
iors, compared to ONS evolved behaviors (results 5).

Thus, ONS evolved the most diverse behavior types, where
such behavior types were defined by specific compositions of
the behavioral components: number of passes, dispersion of team
members, distance of the ball to the field’s center, and episode
length as an indication of associated behavior fitness. This diver-
sity of behavior types was indicative of an expansive search of
highly fit regions in the behavior space at the final generation of
ONS, where multiple comparably highly fit behavior types were
discovered in this behavior space region. This pattern of effective
exploration (diversity of behavior types) balanced with exploita-
tion (high average task performance) was observed when ONS
was applied in all other tasks (Appendix C in Supplementary
Material).

The NS variant evolved similarly diverse behavior types;
however, this diversity did not equate with comparably fit final
generation behaviors. The significantly lower average task per-
formance of NS versus ONS evolved behaviors held true for all
tasks tested (Section 5). This indicates that while the behavioral
diversity maintenance mechanism of NS enabled an expansive
behavior space search and discovery of diverse behavior types,
the lack of an exploitative objective-based search mechanism
was deleterious across all tested keep-away tasks. The following
Section 6.3 provides further support of this results analysis with a

discussion of genotype space visualizations that further elucidate
the effectiveness and efficiency of each search variant applied
across increasingly complex keep-away tasks.

6.3. evolutionary search Variant
efficiency and effectiveness
To ascertain the effectiveness of each variant we visualized the
spread of genotypes evolved at each variant’s final generation,
where such visualizations present the portion of genotypes in
different task performance regions (Figure 3). To ascertain
each variant’s efficiency, we measured the average number of
generations taken to evolve behaviors surpassing a task perfor-
mance threshold (Section 5.2) for each task (Table 5). This sec-
tion only discusses the ONS, OS, and NS variants as the other
variants were found to consistently evolve significantly less
effective behaviors (Figure 2) with lower efficiency (Table 5).
Search efficacy is discussed with respect to exploration versus
exploitation of the genotype space and hence the capacity to
efficiently evolve high-quality behaviors.

6.3.1. ONS Variant
Consider that, for all keep-away tasks (with few exceptions,
Section 5), ONS evolved behaviors yielded significantly higher
average task performances compared to the fittest behaviors
evolved by other variants (Figure 2). Higher average task
performance of the fittest ONS evolved behaviors is supported
by the capacity of ONS to effectively explore the behavior space
during evolutionary search. This is evidenced by large portions
of the fittest ONS evolved genotype populations occupying the
highest 40% task performance range in behavior space regions
for each task (Figure 3, left). Also, compared to other variants,
relatively few genotypes of the fittest ONS evolved populations
were in the lowest 60% of the keep-away task performance
range (Figure 3, left).

However, average ONS efficiency was observed to be
significantly worse or comparable for most keep-away tasks
(Table 5). This low average efficiency of ONS search was indica-
tive of the expansive behavior space exploration and number of
generations needed for such broad behavior space exploration.
The low efficiency of ONS search was, however, offset by the
variants capacity to discover behaviors yielding significantly
higher task performances for all tasks (Section 5). Consider
the progression of average task performance presented in
Figure 5. Figure 5 indicates that ONS consistently achieved
the highest task performance, though average maximum task
performance was attained at later generations compared to
other variants. Hence, the trade-off for higher quality of ONS
evolved behaviors was longer evolution times and the number
of genotype evaluations taken significantly increased with task
complexity (Section 5.2).

The success of the ONS variant was thus consequent of benefi-
cial interactions between its behavioral diversity maintenance and
objective-based search mechanisms. That is, behavioral diversity
maintenance first covered expansive regions of the solution
space encapsulating a diverse range of behaviors. Within such
diverse behavior regions objective-based search acted as a fine

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FigUre 3 | Heat-maps showing portions of (final generation) genotypes evolved by HyperNEAT variants with (left column) and without (right column) policy transfer.
OS, objective-based; NS, novelty search; ONS, objective-novelty hybrid; GNS, genotypic novelty search; OGN, objective-GNS hybrid. Darker shading indicates a
higher portion of genotypes in a given 0.2 interval of normalized task performance [0.0, 1.0].

19

Nitschke and Didi Evolutionary Policy Transfer and Keep-Away

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 62

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FigUre 4 | Left: Self-organizing map (SOM) visualizing behavior space exploration at the final generation of OS, NS, and ONS search variant in 6vs5 keep-away.
Each circle represents a behavior type (four colored slices). Each slice represents one component of the behavior characterization vector (Section 3.4.1), where slice
size equates to the given component’s value. Right: U-matrix visualizing the clustering of behavior types (nodes in the SOM, left) in the behavior space at the final
generation of OS, NS, and ONS. The darker the color between two adjacent nodes the closer the distance between the two behavior types in the behavior space.
Note the differing u-matrix Y-axis values indicating normalized behavioral distances.

20

Nitschke and Didi Evolutionary Policy Transfer and Keep-Away

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 62

tuning mechanism, following fitness gradients to propagate the
evolution of increasingly fit solutions resulting in the discovery
of the highest task performance behaviors overall. This notion is
supported by NS and OS variant results, where neither of these
methods had the benefit of complementing objective-based

search or behavioral diversity maintenance mechanisms (respec-
tively), and as a result significantly poorer quality solutions were
evolved for all tasks.

This demonstrated capacity for the ONS variant to effectively
balance exploration versus exploitation during evolutionary

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FigUre 5 | Average maximum task performance progression (given policy transfer), over 20 runs in each task, for each HyperNEAT. OS, objective-based search;
NS, novelty search; ONS, objective-novelty search; GNS, genotypic novelty search; OGN, objective-genotypic novelty search. Note: ONS variant consistently
evolves behaviors with the highest maximum task performance (observable at each final generation), and progression is over 70 generations for consistency with
non-policy transfer experiments.

21

Nitschke and Didi Evolutionary Policy Transfer and Keep-Away

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 62

search thus boosting evolved behavioral quality is supported by
related work that similarly highlighted the benefits of evolution-
ary search methods that hybridize objective-based search and
behavioral diversity maintenance (Cuccu and Gomez, 2011;
Gomes et al., 2013, 2015; Shorten and Nitschke, 2015; Didi and
Nitschke, 2016a,b).

6.3.2. OS and NS Variants
For all keep-away tasks (with the exception of 5vs4 keep-away,
where there was no significant difference between the fittest
ONS, OS and NS evolved behaviors), the fittest NS evolved
behaviors performed significantly worse than the fittest ONS
and OS evolved behaviors (Section 5). Consider Figure 5, which
illustrates the task performance progression of NS evolved
behaviors, for all tasks, as being consistently third highest
after ONS and OS evolved behaviors. Thus, while NS evolved
behaviors significantly out-performed GNS and OGN for all
tasks, NS evolved keep-away behaviors at best yielded average
task performances comparable to OS evolved behaviors and

were significantly poorer quality compared to ONS evolved
behaviors (Figure 2).

Also, for all tasks, the fittest NS and ONS evolved populations
yielded comparable exploration of the solution space (Figure 3).
However, compared to ONS, relatively small portions of the fit-
test OS evolved genotypes were in the highest task performance
region of the solution space range: [0.6, 1.0] (Figure 3). Though
for all tasks comparable portions of OS and NS evolved geno-
types were calculated as being in this task performance region
of the solution space: [0.6, 1.0] (Figure 3). This comparable
exploration capacity of the OS and NS variants in across all tasks
is also evidenced by average task performance progression over
the evolutionary process of each variant (Figure 5). Observing
Figure 5, it is notable that for all tasks NS and OS evolved behav-
iors attain their respective average maximum task performances
at approximately the same number of generations. This indicates
that the NS and OS search processes were on average equally
effective in that both discovered local optima in the behavior
space after comparable durations of exploration.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

22

Nitschke and Didi Evolutionary Policy Transfer and Keep-Away

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 62

Furthermore, these results indicate that even though the
NS variant maintains the capacity for expansive exploration of
the solution space for all tasks (Figure 3) and evolves diverse
behavior types at the final generation of the evolutionary process
(Section 6.2), the objective-based search of the OS variant was
demonstrated as significantly more effective at evolving high-
quality behaviors for the keep-away tasks.

The significantly higher task performance of ONS and OS
evolved behaviors further supports the notion that the keep-
away task is amenable to objective-based search but only to a
certain degree of task complexity. Section 6.2 highlighted that
specific combinations of behavioral component values are
required to achieve high-quality behaviors, where the fitness
function used by the OS variant (Section 3.3) was suitable for
efficiently evolving such behaviors (Table 5). The NS variant
was also found to be efficient, for all tasks, at evolving its fit-
test behaviors (Table 5), and had the capacity to explore broad
regions of the behavior space (Figure 3). Though, in keep-away,
the search for novel behaviors by the NS variant (Section 3.4)
worked ineffectively, in that novel behaviors discovered were
on average significantly less effective than those evolved by the
OS and ONS variants. This indicates that despite the NS variant
effectively exploring broad regions of the search space, the lack
of objective-based search as an exploitative mechanism for fol-
lowing fitness gradients to increasingly fit behaviors, was found
to significantly limit the performance of the NS variant.

This result is supported by related work demonstrating
that NS is less effective in complex tasks defined by high-
dimensional solution spaces (Cuccu and Gomez, 2011;
Gomes et al., 2013), and that high-quality solutions attained
via including objective-based search to allow exploitation of
broadly explored behavior space regions.

6.4. Discussion summary
This study’s core results indicated that the ONS variant of
HyperNEAT (hybridizing behavioral diversity maintenance
and objective-based search) consistently evolved behaviors with
significantly higher task performance, compared to other search
variants. To elucidate the mechanisms responsible for the effi-
ciency and effectiveness of ONS evolved behaviors, we presented
an analysis of the fittest behavior populations evolved by each
variant.

Section 6.1 examined the impact of the objective-based
versus non-objective and hybrid evolutionary search variants
on the network complexity of the CPPNs corresponding to the
fittest evolved behaviors. This results analysis indicated that
ONS yielded benefits over the other search variants given that
it enabled the evolution of significantly fitter yet topologically
simple controllers. Specifically, the capacity of ONS to suitably
balance exploration versus exploitation of the behavior space
resulted in the evolution of high-quality behaviors encoded by
relatively simple controllers, free of unnecessary topological
complexity and redundancy.

Section 6.2 applied dimensionality reduction to final genera-
tion evolved behaviors to visualize the behavior types evolved
by each variant. SOMs were used to represent the salient
behavioral features comprising the fittest behavior types and

behavior maps were used to visualize the average behavioral
distance between such features. An analysis of these behavior
visualizations indicated that the fittest ONS evolved behavior
types comprised specific combinations of behavioral features
that resulted in high-quality behaviors, whereas other variants
failed to evolve such behavioral feature combinations and thus
evolve behaviors of comparable quality. This analysis indicated
that the ONS variant operated in large, highly fit behavior space
regions. Discovery of the fittest behavior types was enabled by
the ONS objective function exploiting fitness gradients between
highly fit behavior types in a diverse behavior space, where the
exploration of such behaviors was enabled by ONS behavioral
diversity maintenance.

Section 6.3 presented genotype space visualizations indicat-
ing portions of genotypes evolved in various task performance
regions. These visualizations further elucidated the capacity of
the ONS variant to suitably balance exploration versus exploita-
tion during evolutionary search. This genotype space analysis
indicated that the fittest genotype populations (occupying the
highest 40% task performance range in the behavior space)
were consistently evolved by ONS, whereas most of the fittest
populations evolved by other search variants were consistently
in the lowest 60% of the task performance range. This analysis
thus further supported ONS as effectively exploring the behavior
space to exploit (discover) high-quality behaviors during evolu-
tionary search.

7. cOnclUsiOn

This study’s research goal was twofold. First, to elucidate that
a hybrid evolutionary search approach combining objective
(fitness function) and non-objective-based (behavioral diversity
maintenance) search is most suitable for efficiently evolving
effective behavioral solutions to increasingly complex collective
behavior tasks. The collective behavior case study in this research
was RoboCup keep-away soccer. Second, to support a hypothesis
that policy (behavior) transfer coupled with evolutionary search
is a consistently suitable method for boosting the effectiveness
and efficiency of evolved solution quality across increasingly
complex tasks.

The first insight from experimental results was that evo-
lutionary search driven by hybridized behavioral diversity
maintenance and objective-based search was best suited for effi-
ciently evolving effective behaviors across increasingly complex
keep-away tasks. The second insight was that policy transfer
significantly increased the average quality (task performance)
and the efficiency (genotype evaluations taken) with which
such behaviors were evolved. However, policy transfer had the
most benefits for keep-away behaviors evolved by the hybrid
evolutionary search. That is, all hybrid evolved behaviors were
significantly more effective (and efficiently evolved) compared
to those evolved by other evolutionary search variants. This
result was supported by related work that similarly demon-
strated the benefits of combining behavioral diversity mainte-
nance and objective-based evolutionary search (Gomes et al.,
2013; Shorten and Nitschke, 2015; Didi and Nitschke, 2016b)
to mitigate the bootstrap problem (Gomez and Miikkulainen,

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

23

Nitschke and Didi Evolutionary Policy Transfer and Keep-Away

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 62

1997) for complex tasks and enable the evolution of high-quality
solutions. The third insight was that the high-quality behaviors
evolved by the hybrid evolutionary search method encoded
relatively simple neural controllers. This was a result of this
hybrid method’s capacity to appropriately balance explora-
tion versus exploitation during evolutionary search, such that
evolved controllers did not contain unnecessary complexity that
hindered high-task performance.

Thus, this study contributes to increasing empirical evidence
indicating the effectiveness of hybrid objective-behavioral
diversity search methods in complex tasks defined by very large
behavior spaces (Mouret and Doncieux, 2009b, 2012; Lehman
and Stanley, 2011b; Gomes et al., 2012, 2015; Inden et al., 2013;
Shorten and Nitschke, 2015). Ongoing research is investigating
the impact and interaction of various behavior representations,
behavior evolution and policy transfers methods, on facilitating
the effective transfer of evolving behaviors across various tasks.

Hence, future research aims to further elucidate the necessary
methodological features for facilitating behavior evolution
across increasingly complex and dissimilar tasks. The end goal is
to design new methods capable of evolving controllers that elicit
general problem solving behavior.

aUThOr cOnTriBUTiOns

GN wrote the paper and formulated the research questions,
experimental design and performed analysis. SD implemented
methods, ran experiments and statistical tests.

sUPPleMenTarY MaTerial

The Supplementary Material for this article can be found online
at http://www.frontiersin.org/article/10.3389/frobt.2017.00062/
full#supplementary-material.

reFerences

Abu-Mostafa, Y. (1989). “Information theory, complexity, and neural networks,”
in IEEE Communications Magazine (Piscataway: IEEE Press), 25–29.

Ammar, H., Tuyls, K., Taylor, M., Driessens, K., and Weiss, G. (2012). “Reinforcement
learning transfer via sparse coding,” in Proceedings of the Eleventh International
Conference on Autonomous Agents and Multiagent Systems (Valencia, Spain:
AAAI), 4–8.

Bahceci, E., and Miikkulainen, R. (2008). “Transfer of evolved pattern-based
heuristics in games,” in Proceedings of the IEEE Symposium on Computational
Intelligence and Games (Perth, Australia: Morgan Kaufmann), 220–227.

Berg, T. V., and Whiteson, S. (2013). “Critical factors in the performance of hyper-
neat,” in Proceedings of the Genetic and Evolutionary Computation Conference
(Amsterdam, The Netherlands: ACM), 759–766.

Bou-Ammar, H., Eaton, E., Ruvolo, P., and Taylor, M. (2015). “Unsupervised
cross-domain transfer in policy gradient reinforcement learning via manifold
alignment,” in Proceedings of the AAAI Conference on Artificial Intelligence
(Austin: AAAI Press), 2504–2510.

Boutsioukis, G., Partalas, I., and Vlahavas, I. (2012). “Transfer learning in multi-
agent reinforcement learning domains,” in Recent Advances in Reinforcement
Learning (Berlin, Germany: Springer), 249–260.

Brameier, M., and Banzhaf, W. (2002). “Explicit control of diversity and effective
variation distance in linear genetic programming,” in Proceedings of the 5th
European Conference on Genetic Programming (Kinsale, Ireland: Springer-
Verlag), 37–49.

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. USA:
Routledge.

Crepinsek, M., Liu, S., and Mernik, M. (2013). Exploration and exploitation in
evolutionary algorithms. ACM Comput. Surv. 45, 1–33. doi:10.1145/2480741.
2480752

Cuccu, G., and Gomez, F. (2011). “When novelty is not enough,” in Proceedings
of the European Conference on the Applications of Evolutionary Computation
(Berlin: Springer), 234–243.

Cuccu, G., Gomez, F., and Glasmachers, T. (2011). “Novelty-based restarts for evo-
lution strategies,” in Proceedings of the Congress on Evolutionary Computation
(New Orleans, USA: IEEE Press), 158–163.

Cully, A., Clune, J., Tarapore, D., and Mouret, J. (2015). Robots that can adapt like
animals. Nature 521, 503–507. doi:10.1038/nature14422

Cully, A., and Mouret, J. (2016). Evolving a behavioral repertoire for a walking
robot. Evol. Comput. 24, 1–33. doi:10.1162/EVCO_a_00143

D’Ambrosio, D., and Stanley, K. (2013). Scalable multiagent learning through
indirect encoding of policy geometry. Evol. Intell. J. 6, 1–26. doi:10.1007/
s12065-012-0086-3

Deb, K. (2001a). Multi-Objective Optimization Using Evolutionary Algorithms.
New York, USA: John Wiley and Sons.

Deb, K. (2001b). Pareto Based Multi-Objectives Optimization Using Evolutionary
Algorithms. New York, USA: John Wiley and Sons.

Didi, S., and Nitschke, G. (2016a). “Hybridizing novelty search for transfer learn-
ing,” in Proceedings of the IEEE Symposium Series on Computational Intelligence
(Athens, Greece: IEEE Press), 10–18.

Didi, S., and Nitschke, G. (2016b). “Multi-agent behavior-based policy transfer,”
in Proceedings of the European Conference on the Applications of Evolutionary
Computation (Porto, Portugal: Springer), 181–197.

Doncieux, S. (2014). “Knowledge extraction from learning traces in continuous
domains,” in AAAI 2014 Fall Symposium on Knowledge, Skill, and Behavior
Transfer in Autonomous Robots (Arlington, USA: AAAI Press), 1–8.

Doncieux, S., Bredeche, N., Mouret, J.-B., and Eiben, A. (2015). Evolutionary
robotics: what, why, and where to. Front. Robot. AI 2:1–18. doi:10.3389/
frobt.2015.00004

Doncieux, S., and Mouret, J. (2014). Beyond black-box optimization: a review of
selective pressures for evolutionary robotics. Evol. Intell. 7, 71–93. doi:10.1007/
s12065-014-0110-x

Doncieux, S., Mouret, J.-B., Bredeche, N., and Padois, V. (2011). “Evolutionary
robotics: exploring new horizons,” in New Horizons in Evolutionary Robotics
(Berlin, Germany: Springer), 3–25.

Duarte, M., Costa, V., Gomes, J., Rodrigues, T., Silva, F., Oliveira, S., et al. (2016).
Evolution of collective behaviors for a real swarm of aquatic surface robots.
PLoS ONE 11:e0151834. doi:10.1371/journal.pone.0151834

Eiben, A., and Smith, J. (2003). Introduction to Evolutionary Computing. Berlin,
Germany: Springer-Verlag.

Ekárt, A., and Németh, S. (2002). “Maintaining the diversity of genetic programs,”
in Proceedings of the 5th European Conference on Genetic Programming (EuroGP
2002) (Kinsale, Ireland: Springer-Verlag), 162–171.

Flannery, B., Teukolsky, S., and Vetterling, W. (1986). Numerical Recipes.
Cambridge, UK: Cambridge University Press.

Floreano, D., Dürr, P., and Mattiussi, C. (2008). Neuroevolution: from architectures
to learning. Evol. Intell. 1, 47–62. doi:10.1007/s12065-007-0002-4

Gauci, J., and Stanley, K. (2008). “A case study on the critical role of geometric
regularity in machine learning,” in Proceedings of the AAAI Conference on
Artificial Intelligence (Menlo Park, USA: AAAI Press), 628–633.

Gersho, A., and Gray, R. (1992). Vector Quantization and Signal Compression. New
York, USA: Springer Science+Business Media.

Ghasemi, A., and Zahediasl, S. (2012). Normality tests for statistical analysis:
a guide for non-statisticians. Int. J. Endocrinol. Metab. 10, 486–489. doi:10.5812/
ijem.3505

Gomes, J., and Christensen, A. (2013a). “Generic behavior similarity measures for
evolutionary swarm robotics,” in Proceedings of the Genetic and Evolutionary
Computation Conference (Amsterdam, The Netherlands: ACM Press), 199–206.

Gomes, J., and Christensen, A. (2013b). “Generic behaviour similarity measures for
evolutionary swarm robotics,” in Proceedings of the 15th Annual Conference on

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/article/10.3389/frobt.2017.00062/full#supplementary-material
http://www.frontiersin.org/article/10.3389/frobt.2017.00062/full#supplementary-material
https://doi.org/10.1145/2480741.
2480752
https://doi.org/10.1145/2480741.
2480752
https://doi.org/10.1038/nature14422
https://doi.org/10.1162/EVCO_a_00143
https://doi.org/10.1007/s12065-012-0086-3
https://doi.org/10.1007/s12065-012-0086-3
https://doi.org/10.3389/frobt.2015.00004
https://doi.org/10.3389/frobt.2015.00004
https://doi.org/10.1007/s12065-014-0110-x
https://doi.org/10.1007/s12065-014-0110-x
https://doi.org/10.1371/journal.pone.0151834
https://doi.org/10.1007/s12065-007-0002-4
https://doi.org/10.5812/ijem.3505
https://doi.org/10.5812/ijem.3505

24

Nitschke and Didi Evolutionary Policy Transfer and Keep-Away

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 62

Genetic and Evolutionary Computation (Amsterdam, The Netherlands: ACM),
199–206.

Gomes, J., Mariano, P., and Christensen, A. (2014). “Avoiding convergence in
cooperative coevolution with novelty search,” in Proceedings of the International
Conference on Autonomous Agents and Multi-Agent Systems (Paris, France:
ACM), 1149–1156.

Gomes, J., Mariano, P., and Christensen, A. (2015). “Devising effective novelty
search algorithms: a comprehensive empirical study,” in Proceedings of the
Genetic Evolutionary Computation Conference (Madrid, Spain: ACM), 943–950.

Gomes, J., Mariano, P., and Christensen, A. (2016). Novelty-driven cooperative
coevolution. Evol. Comput. 25, 275–307. doi:10.1162/EVCO_a_00173

Gomes, J., Urbano, P., and Christensen, A. (2012). “Progressive minimal criteria
novelty search,” in Advances in Artificial Intelligence, eds J. Pavon, N. Duque-
Mendez, and R. Fernandez (Berlin, Germany: Springer), 281–290.

Gomes, J., Urbano, P., and Christensen, A. (2013). Evolution of swarm robot-
ics systems with novelty search. Swarm Intell. 7, 115–144. doi:10.1007/
s11721-013-0081-z

Gomez, F., and Miikkulainen, R. (1997). Incremental evolution of complex general
behavior. Adapt. Behav. 5, 317–342. doi:10.1177/105971239700500305

Haykin, S. (1995). Neural Networks: A Comprehensive Foundation. Ontario,
Canada: Prentice Hall.

Hodjat, B., Shahrzad, H., and Miikkulainen, R. (2016). “Distributed age-layered
novelty search,” in Proceedings of the Fifteenth International Conference on the
Synthesis and Simulation of Living Systems (Cancun, Mexico: MIT Press).

Inden, B., Jin, Y., Haschke, R., Ritter, H., and Sendhoff, B. (2013). An examination
of different fitness and novelty based selection methods for the evolution of
neural networks. Soft Comput. 5, 753–767. doi:10.1007/s00500-012-0960-z

Kohonen, T. (1990). The self-organizing map. Proc. IEEE 78, 1464–1480.
doi:10.1109/5.58325

Lehman, J., and Stanley, K. (2010a). “Efficiently evolving programs through the
search for novelty,” in Proceedings of the 12th Annual Conference on Genetic and
Evolutionary Computation (Portland, USA: ACM), 837–844.

Lehman, J., and Stanley, K. (2010b). “Revising the evolutionary computation
abstraction: minimal criteria novelty search,” in Proceedings of the 12th Annual
Conference on Genetic and Evolutionary Computation (Philadelphia, USA:
ACM), 103–110.

Lehman, J., and Stanley, K. (2011a). Abandoning objectives: evolution through
the search for novelty alone. Evol. Comput. 19, 189–223. doi:10.1162/
EVCO_a_00025

Lehman, J., and Stanley, K. (2011b). “Novelty search and the problem with objec-
tives,” in Genetic Programming in Theory and Practice IX (Berlin, Germany:
Springer), 37–56.

Lehman, J., Stanley, K., and Miikkulainen, R. (2013). “Effective diversity mainte-
nance in deceptive domains,” in Proceedings of the Genetic and Evolutionary
Computation Conference (New York: ACM Press), 215–222.

Liapis, A., Yannakakis, G., and Togelius, J. (2015). Constrained novelty search:
a study on game content generation. Evol. Comput. 23, 101–129. doi:10.1162/
EVCO_a_00123

Metzen, J. H., Edgington, M., and Kassahun, Y. (2008). Analysis of an evolutionary
reinforcement learning method in a multi-agent domain. Auton. Agents Multi
Agent Syst. 7, 291–298.

Moriguchi, H., and Honiden, S. (2010). “Sustaining behavioral diversity in neat,”
in Proceedings of the 12th Annual Conference on Genetic and Evolutionary
Computation (Portland, USA: ACM), 611–618.

Morse, G., Risi, S., Snyder, C., and Stanley, K. (2013). “Single-unit pattern genera-
tors for quadruped locomotion,” in Proceedings of the Genetic and Evolutionary
Computation Conference (Amsterdam, The Netherlands: ACM), 719–726.

Moshaiov, A., and Tal, A. (2014). “Family bootstrapping: a genetic transfer learning
approach for onsetting the evolution for a set of realated robotic tasks,” in
Proceedings of the Congress on Evolutionary Computation (Beijing: IEEE Press),
2801–2808.

Mouret, J., and Doncieux, S. (2009a). “Overcoming the bootstrap problem in
evolutionary robotics using behavioral diversity,” in Proceedings of the 11th
IEEE Congress on Evolutionary Computation (Trondheim, Norway: IEEE Press),
1161–1168.

Mouret, J., and Doncieux, S. (2009b). “Using behavioral exploration objectives
to solve deceptive problems in neuro-evolution,” in Proceedings of the Genetic

and Evolutionary Computation Conference (Montreal, Canada: ACM Press),
627–634.

Mouret, J., and Doncieux, S. (2012). Encouraging behavioral diversity in evolu-
tionary robotics: an empirical study. Evol. Comput. 20, 91–133. doi:10.1162/
EVCO_a_00048

Mueller-Bady, R., Kappes, M., Medina-Bulo, I., and Palomo-Lozano, F. (2016).
“Maintaining genetic diversity in multimodal evolutionary algorithms
using population injection,” in Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2016) (Denver, USA: ACM), 95–96.

Pan, S., and Yang, Q. (2010). A survey on transfer learning. IEEE Trans. Knowl.
Data Eng. 22, 1345–1359. doi:10.1109/TKDE.2009.191

Ramon, J., Driessens, K., and Croonenborghs, T. (2007). “Transfer learning in
reinforcement learning problems through partial recycling,” in Proceedings of
the 18th European Conference on Machine Learning (Warsaw, Poland: Springer),
699–707.

Risi, S., Hughes, C., and Stanley, K. (2010). Evolving plastic neural networks with
novelty search. Adapt. Behav. 18, 470–491. doi:10.1177/1059712310379923

Risi, S., and Stanley, K. (2011). “Enhancing es-hyperneat to evolve more complex
regular neural networks,” in Proceedings of the Genetic and Evolutionary
Computation Conference (Dublin, Ireland: ACM Press), 1539–1546.

Risi, S., and Stanley, K. (2013). “Confronting the challenge of learning a flexible
neural controller for a diversity of morphologies,” in Proceedings of the Genetic
and Evolutionary Computation Conference (Amsterdam, The Netherlands:
ACM), 255–261.

Salah, A., Hart, E., and Sim, K. (2016). “Validating the grid diversity operator: an
infusion technique for diversity maintenance in population-based optimisation
algorithms,” in Proceedings of the European Conference on the Applications of
Evolutionary Computation (Evostar 2016) (Porto, Portugal: Springer), 11–26.

Sareni, B., and Krahenbuhl, L. (2013). Fitness sharing and niching methods revis-
ited. IEEE Trans. Evol. Comput. 2, 97–106. doi:10.1109/4235.735432

Shorten, D., and Nitschke, G. (2015). “Evolving generalised maze solvers,” in
Proceedings of the 18th European Conference on the Applications of Evolutionary
Computation (Copenhagen, Denmark: Springer), 783–794.

Stanley, K. (2007). Compositional pattern producing networks: a novel abstrac-
tion of development. Genet. Program. Evol. Mach. 8, 131–162. doi:10.1007/
s10710-007-9028-8

Stanley, K., D’Ambrosio, D., and Gauci, J. (2009). A hypercube-based indirect
encoding for evolving large-scale neural networks. Artif. Life 15, 185–212.
doi:10.1162/artl.2009.15.2.15202

Stanley, K., and Miikkulainen, R. (2002). Evolving neural networks through augment-
ing topologies. Evol. Comput. 10, 99–127. doi:10.1162/106365602320169811

Stone, P., Kuhlmann, G., Taylor, M., and Liu, Y. (2006a). “Keepaway soccer: from
machine learning testbed to benchmark,” in Proceedings of RoboCup-2005:
Robot Soccer World Cup IX (Berlin, Germany: Springer), 93–105.

Stone, P., Sutton, R., and Kuhlmann, G. (2006b). Reinforcement learn-
ing for robocup-soccer keepaway. Adapt. Behav. 13, 165–188.
doi:10.1177/105971230501300301

Sutton, R., and Barto, A. (1998). An Introduction to Reinforcement Learning.
Cambridge, USA: John Wiley and Sons.

Taylor, M. E., and Stone, P. (2009). Transfer learning for reinforcement learning
domains: a survey. J. Mach. Learn. Res. 10, 1633–1685. doi:10.1007/978-3-642-
29946-9_25

Taylor, M., Stone, P., and Liu, Y. (2010). Transfer learning via inter-task
mappings for temporal difference learning. J. Mach. Learn. 8, 2125–2167.
doi:10.1007/978-3-642-29946-9_23

Taylor, M., Whiteson, S., and Stone, P. (2006). “Transfer learning for policy
search methods,” in ICML 2006: Proceedings of the Twenty-Third International
Conference on Machine Learning Transfer Learning Workshop (Pittsburgh, USA:
ACM), 1–4.

Torrey, L., and Shavlik, J. (2009). “Transfer learning,” in Handbook of Research on
Machine Learning Applications (Hershey, USA: IGI Global), 17–23.

Ultsch, A., and Siemon, H. (2001). “Kohonen’s self organizing feature maps for
exploratory data analysis,” in Proceedings of the International Neural Network
Conference (Dordrecht, The Netherlands: Kluwer), 305–308.

Urbano, P., and Georgiou, L. (2013). “Improving grammatical evolution in santa
fe trail using novelty search,” in Proceedings of the 12th European Conference on
Artificial Life (Taormina, Italy: MIT Press), 917–924.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://doi.org/10.1162/EVCO_a_00173
https://doi.org/10.1007/s11721-013-0081-z
https://doi.org/10.1007/s11721-013-0081-z
https://doi.org/10.1177/105971239700500305
https://doi.org/10.1007/s00500-012-0960-z
https://doi.org/10.1109/5.58325
https://doi.org/10.1162/EVCO_a_00025
https://doi.org/10.1162/EVCO_a_00025
https://doi.org/10.1162/EVCO_a_00123
https://doi.org/10.1162/EVCO_a_00123
https://doi.org/10.1162/EVCO_a_00048
https://doi.org/10.1162/EVCO_a_00048
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1177/1059712310379923
https://doi.org/10.1109/4235.735432
https://doi.org/10.1007/s10710-007-9028-8
https://doi.org/10.1007/s10710-007-9028-8
https://doi.org/10.1162/artl.2009.15.2.15202
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1177/105971230501300301
https://doi.org/10.1007/978-3-642-29946-9_25
https://doi.org/10.1007/978-3-642-29946-9_25
https://doi.org/10.1007/978-3-642-29946-9_23

25

Nitschke and Didi Evolutionary Policy Transfer and Keep-Away

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 62

Velez, R., and Clune, J. (2014). “Novelty search creates robots with general skills
for exploration,” in Proceedings of the Genetic and Evolutionary Computation
Conference (Vancouver, Canada: ACM), 737–744.

Verbancsics, P. (2011). Effective Task Transfer through Indirect Encoding. Ph.D.
Thesis, Department of Electrical Engineering and Computer Science, University
of Central Florida, Orlando, USA.

Verbancsics, P., and Stanley, K. (2010). Evolving static representations for task
transfer. J. Mach. Learn. Res. 11, 1737–1763.

Verbancsics, P., and Stanley, K. (2011). “Constraining connectivity to encourage
modularity in hyperneat,” in Proceedings of the Genetic and Evolutionary
Computation Conference (Dublin, Ireland: ACM), 1483–1490.

Whiteson, S., Kohl, N., Miikkulainen, R., and Stone, P. (2005). Evolving soccer
keepaway players through task decomposition. Mach. Learn. 59, 5–30.
doi:10.1007/s10994-005-0460-9

Whiteson, S., and Stone, P. (2006). Evolutionary function approximation for
reinforcement learning. J. Mach. Learn. Res. 7, 877–917.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2017 Nitschke and Didi. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use, distribu-
tion or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://doi.org/10.1007/s10994-005-0460-9
http://creativecommons.org/licenses/by/4.0/

	Evolutionary Policy Transfer
and Search Methods for Boosting Behavior Quality: RoboCup
Keep-Away Case Study
	1. Introduction
	2. Related Work
	2.1. Behavioral and Genotypic Diversity Maintenance
	2.2. Evolutionary Policy Transfer

	3. Methods
	3.1. Taker-Team Heuristic Controller
	3.2. HyperNEAT: Hypercube-Based NEAT
	3.2.1. HyperNEAT Keeper-Team Controller

	3.3. Objective-Based Fitness Function
	3.3.1. OS Variant: Objective-Based Search

	3.4. Evolutionary Search with Behavioral Diversity Maintenance
	3.4.1. NS Variant: Novelty Search
	3.4.2. ONS Variant: Novelty-Objective Search Hybrid

	3.5. Evolutionary Search with Genotypic Diversity Maintenance
	3.5.1. GNS Variant: Genotypic Novelty Search
	3.5.2. OGN Variant: Hybrid Objective-Genotypic Novelty Search

	3.6. Keep-Away Task Complexity
	3.7. Collective Behavior (Policy) Transfer

	4. Experiments
	4.1. Experiment Goals
	4.2. Experiment Types
	4.3. Collective (Keep-Away) Behavior Evaluation

	5. Results
	5.1. Average Task Performance Comparison
	5.1.1. Task Performance Comparison: Policy versus No Policy Transfer
	5.1.2. Task Performance Comparison:
Given Policy Transfer

	5.2. Average Method Efficiency Comparison
	5.2.1. Efficiency Comparison: Policy Transfer
versus No Policy Transfer
	5.2.2. Efficiency Comparison: Given Policy Transfer

	6. Discussion
	6.1. Network Complexity of Evolved Behaviors
	6.2. Behavioral Space Analysis
	6.3. Evolutionary Search Variant
Efficiency and Effectiveness
	6.3.1. ONS Variant
	6.3.2. OS and NS Variants

	6.4. Discussion Summary

	7. Conclusion
	Author Contributions
	Supplementary Material
	References

